Physical Insights into the Fields upon the Superstrate-Loaded Cylindrically Conformal Microstrip Antenna

Article Preview

Abstract:

A specific form of the spectral-domain Green’s functions for the superstrate-loaded cylindrically conformal microstrip structure is developed through the rigorous full-wave analysis. The incident fields produced by the known radial current source along the thin probe are also deduced in this special structure for the first time. Ultimately, with these considerations above, the surface current distribution can be obtained by the Method of Moment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

881-888

Citation:

Online since:

November 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Abdelaziz, Bandwidth Enhansment of Microstrip Antenna, Progress In Electromagnetics Research, PIER 63, 311-317, (2006).

DOI: 10.2528/pier06053001

Google Scholar

[2] A. K. Bhattacharyya, L. Shafai, and R. Gary, Microstrip Antenna - a Generalized Transmission Line, Progress In Electromagnetics Research, PIER 04, 45-84, (1991).

DOI: 10.2528/pier89080400

Google Scholar

[3] C. M. Krowne, Cylindrical-rectangular microstrip antenna, IEEE Trans. Antennas Propagat., vol. AP-31, pp.194-199, (1983).

DOI: 10.1109/tap.1983.1143000

Google Scholar

[4] K. L. Wong, Y. H. Liu, and C. Y. Huang, Generalized transmission line model for cylindrical-rectangular microstrip antenna, Microwave Opt. Technol. Lett., vol. 7, pp.729-732, Nov. (1994).

DOI: 10.1002/mop.4650071602

Google Scholar

[5] C. -Y. Huang, Y. –H. Liu, and K. L. Wong, Input impedance calculation of cylindrical-rectangular microstrip antennas using GTLM theory, IEEE Antennas Propagat. Symp. Dig., vol. 4, June 1995, pp.1792-1795.

DOI: 10.1109/aps.1995.530932

Google Scholar

[6] K. M. Luk, K. F. Lee, and J. S. Dahele, Analysis of the cylindrical-rectangular mictrostrip patch antenna, IEEE Trans. Antennas Propagat., vol. 37, No. 2, pp.143-147, (1989).

DOI: 10.1109/8.18699

Google Scholar

[7] J. Ashkenazy, S. Shrikman, and D. Treeves, Electric surface current model for the analysis of microstrip antennas on cylindrical bodies, IEEE Trans. Antennas Propagat., vol. AP-33, pp.295-300, (1985).

DOI: 10.1109/tap.1985.1143573

Google Scholar

[8] T. M. Habashy, S. M. Ali, and J. A Kong, Input impedance and radiation pattern of cylindrical-rectangular and wraparound microstrip antennas, IEEE Trans. Antennas Propagat ., vol. 38. pp.722-731, May (1990).

DOI: 10.1109/8.53500

Google Scholar

[9] S. B. Fonseca and A. J. Giarola, Analysis of microstrip wraparound antennas using dyadic Green's functions, IEEE Trans. Antennas Propagat., vol. AP-31, pp.248-253, Mar. (1983).

DOI: 10.1109/tap.1983.1143043

Google Scholar

[10] F. C. Franklin, S. B. A. Fonseca, J. M. Soares, and A. J. Giarola, Analysis of microstrip antennas on circular-cylindrical substrates with a dielectric overlay, IEEE Trans. Antennas Propagat., vol. 39, No. 9, pp.1398-1403, (1991).

DOI: 10.1109/8.99050

Google Scholar

[11] W. Y. Tam, A. K. Y. Lai, and K. M. Luk, Full wave analysis of aperture-coupled cylindrical rectangular microstrip antenna, Electronics Lett., vol. 30, No. 18, pp.1461-1462, Sept. 1, (1994).

DOI: 10.1049/el:19941022

Google Scholar

[12] W. Y. Tam, A. K. Y. Lai, and K. M. Luk, Cylindrical rectangular microstrip antennas with coplanar parasitic patches, Proc. Inst. Elect. Eng. -Microw. Antennas Propag., vol. 142, pp.300-306, Aug. (1995).

DOI: 10.1049/ip-map:19952053

Google Scholar

[13] V. B. Erturk and R. G. Rojas, Efficient analysis of input impedance and mutual coupling of microstrip antennas mounted on large coated cylinders, IEEE Trans. Antennas Propagat., vol. 51, no. AP-4, pp.739-749, Apr. (2003).

DOI: 10.1109/tap.2003.811060

Google Scholar

[14] M. He and X. W. Xu, Closed-Form solutions for analysis of cylindrically conformal microstrip antennas with arbitrary radii, IEEE Trans. Antennas Propagat ., vol. 53. pp.518-525, Jan (2005).

DOI: 10.1109/tap.2004.838772

Google Scholar

[15] S. M. Ali, T. M. Habashy, J. F. Kiang, and J. A. Kong, Resonance in cylindrical-rectangular and wraparound microstrip structures, IEEE Trans. Microwave Theory Tech., Phil. Trans., vol. 37, pp.1773-1783, Nov. (1989).

DOI: 10.1109/22.41044

Google Scholar

[16] K. L. Wong, Y. T. Cheng, and J. S. Row, Resonance in a superstrate-loaded cylindrical-rectangular microstrip structure, IEEE Trans. Microwave Theory & Tech., vol. 41, No. 5, pp.814-819, (1993).

DOI: 10.1109/22.234516

Google Scholar

[17] R. F. Harrington, Field Computation by Moment Methods. New York: Macmillan, (1968).

Google Scholar

[18] W. C. Chew and J. A. Kong, Analysis of circular microstrip disk antenna with thick dielectric substrate, IEEE Trans. Antennas Propagat., vol. AP-29, pp.68-76, Jan. (1981).

DOI: 10.1109/tap.1981.1142534

Google Scholar

[19] W. C. Chew, J. A. Kong, and L. C. Shen, Radiation characteristics of a circular microstrip disk antenna, J. Appl. Phys., vol. 57, pp.3907-3915, (1980).

Google Scholar

[20] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, (1961).

Google Scholar

[21] [. A. J. M. Soares, S. B. A. Fonseca, and A. J. Giarola, The effect of a dielectric cover on the current distribution and input impedance of printed dipoles, IEEE Trans. Antennas Propagat., vol. AP-32, pp.1149-1153, Nov. (1984).

DOI: 10.1109/tap.1984.1143241

Google Scholar

[22] W. C. Chew, J. A. Kong, and L. C. Shen, Radiation characteristics of a circular microstrip disk antenna, IEE Procs. -Microw. Antennas Propagat., vol. 148, No. 3, Jan. (2001).

Google Scholar

[23] W. C. Chew, Waves and Fields in Inhomogeneous Media. New York: Van Nostrand, (1990).

Google Scholar