Face Recognition Using Local Variation

Article Preview

Abstract:

In this paper, a novel approach, namely local variation projection (LVP), is presented for face recognition. LVP defines an adjacency graph to model the variation among nearby face images, which includes the within-class variation and between-class variation, also called margin. In order to better detect the discriminant structure, we assign a small weight to the variation among nearby face images from the same class. Based on this content, a concise feature extraction criterion is built for dimensionality reduction. Experiments indicate the effectiveness of our proposed approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

875-880

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Turk, A. P. Pentland, Face recognition using eigenfaces, In: Proc. Internat. Con. Computer Vision and Pattern Recognition-CVPR, pp.586-591, (1991).

DOI: 10.1109/cvpr.1991.139758

Google Scholar

[2] Y. W. Jeong, H. S. Kim, New speaker adaptation method using 2-DPCA, IEEE Signal Processing letters, vol. 17, no. 2, Feb. (2010).

Google Scholar

[3] J. Yang, J. Y. Yang, From image vector to matrix: a straightforward image projection technique-IMPCA vs. PCA, Pattern Recognition, vol. 35, pp.1997-1999, (2002).

DOI: 10.1016/s0031-3203(02)00040-7

Google Scholar

[4] J. Yang, D. Zhang, A. Frangi, J. Y. Yang, Two-dimensional PCA: a new approach to appearance-based face representation and recognition, IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 1, pp.131-137, (2004).

DOI: 10.1109/tpami.2004.1261097

Google Scholar

[5] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol. 290, no. 5500, pp.2323-2326, (2000).

DOI: 10.1126/science.290.5500.2323

Google Scholar

[6] J. B. Tenenbaum, V. D. Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol. 290, no. 5500, pp.2320-2323, (2000).

DOI: 10.1126/science.290.5500.2319

Google Scholar

[7] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, Graph embedding and extensions: a general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp.40-51, (2007).

DOI: 10.1109/tpami.2007.250598

Google Scholar

[8] X. He, S. Yan, Y. Hu, P. Niyogi, H. Zhang, Face recognition using laplacianfaces, IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 3, pp.328-340, (2005).

DOI: 10.1109/tpami.2005.55

Google Scholar

[9] Q. Gao, H. Xu, Y. Li, D. Xie, Two-dimensional supervised local similarity and variation projection, Pattern recognition, vol. 43, no. 10, pp.3359-3363, (2010).

DOI: 10.1016/j.patcog.2010.05.017

Google Scholar

[10] H. X. Wang, Local two-dimensional canonical correlation analysis, IEEE Signal Processing letters, vol. 17, no. 11, (2010).

Google Scholar

[11] X. He, D. Cai, S. Yan, H. J. Zhang, Neighborhood preserving embedding, In: Proc. the Tenth Internat. Con. on Computer Vision-ICCV , (2005).

DOI: 10.1109/iccv.2005.167

Google Scholar

[12] D. Cai, X. He, J. Han, Isometric projection, In: Proc. Association for the Advancement of Artificial Intelligence-AAAI, (2007).

Google Scholar

[13] B. Schölkopf, A. Smola, K. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computer, vol. 15, no. 5, pp.1299-1319, (1998).

DOI: 10.1162/089976698300017467

Google Scholar

[14] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection, IEEE Trans, Pattern Analysis and Machine Intelligence, (1997).

DOI: 10.1109/34.598228

Google Scholar