Toughness Properties of Concrete Modified with Water-Borne Polyurethane

Article Preview

Abstract:

A novel kind of block polymer with characteristics of rod-like chain conformations, water-borne polyurethane (PUA), was synthesized by incorporate polyacrylate (PA) into the PU chain to prepare an aqueous polyurethane-polyacrylate (PUA) hybrid emulsion with core-shell structure. The influence of water-borne PUA on workability and mechanical performance of concrete were investigated experimentally. PUA had minimal harmful effect on the compressive strength whereas the flexural strength was increased by 23.2% with dosage of 0.5% and 23.3% with dosage of 1.0%, respectively. The fracture energy ratios of concrete with a dosage of PUA less than 1% are greatly improved more than double with the decreasing of concrete strength less than 10%. The water-borne PUA also enhances the early plastic cracking resistance and the impact resistance of concrete. The impact energy consumption of samples with PUA increase nearly three times more than reference samples, also better than samples with PP fiber. And PUA can refine the crack from 2-4mm to 0.2-0.5mm of the main distribution, decreasing total area of crack greatly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-117

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alina Badanoiu, Jonas Holmgren et al, Cementitious composites reinforced with continuous carbon fibers for strengthening of concrete structures, Cement and Concrete Composites, 25 (2003) 387-394.

DOI: 10.1016/s0958-9465(02)00054-9

Google Scholar

[2] A. E. Naaman, H. W. Reinhardt, High performance fiber reinforced cement composites HPFRCC-4: International workshop Ann Arbor, Michigan, Cement and Concrete Composites, 6 (2004) 757-759.

DOI: 10.1016/j.cemconcomp.2003.09.001

Google Scholar

[3] Andrzej M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering, Composite Structures, 86 (2008) 3-9.

DOI: 10.1016/j.compstruct.2008.03.006

Google Scholar

[4] Yoshihiko Ohama, Recent progress in concrete-polymer composites, Advanced Cement Based Materials, 5 (1997) 31-40.

DOI: 10.1016/s1065-7355(96)00005-3

Google Scholar

[5] H. Hashimoto, Y. Ohama, Polymer modified mortars, The Journal of the College of Engineering of Nihon University, Series A, 19 (1978) 113-117.

Google Scholar

[6] J. M. Gao, C. X. Qian, B. Wang, K. E. Morino, Experimental study on properties of polymer modified cement mortars with silica fume, Cement Concrete Res., 32 (2002) 41-45.

DOI: 10.1016/s0008-8846(01)00626-3

Google Scholar

[7] J. G. Wang, S. X. Zhang, et al, Reinforced polymer concrete: Physical properties of the matrix and static/dynamic bond behaviour, Cement Concrete Comp., 27 (2005) 934-944.

DOI: 10.1016/j.cemconcomp.2005.06.004

Google Scholar

[8] Y. Ohama, Polymer-based admixtures, Cement Concrete Comp., 20 (1998) 189-212.

DOI: 10.1016/s0958-9465(97)00065-6

Google Scholar

[9] S. Pascal, A. Alliche, P. Pilvin, Mechanical behaviour of polymer modified mortars, Mater. Sci. Eng.: A, 380 (2004) 1-2.

DOI: 10.1016/j.msea.2004.03.049

Google Scholar

[10] C. T. Sumathy, M. Dharakumar, M. Sarojadevi, S. Saccubai, Modification of cement mortars by polymer latex, J Appl. Polym. Sci., 63 (1997) 1251-1257.

DOI: 10.1002/(sici)1097-4628(19970307)63:10<1251::aid-app2>3.0.co;2-j

Google Scholar

[11] L. K. Aggarwal, P. C. Thapliyal, S. R. Karade, Properties of polymer-modified mortars using epoxy and acrylic emulsions, Constr Build Mater., 21 (2007) 379-383.

DOI: 10.1016/j.conbuildmat.2005.08.007

Google Scholar

[12] S. Zhong, Z. Chen, Properties of latex blends and its modified cement mortars, Cement Concrete Res., 32 (2002) 1515-1524.

DOI: 10.1016/s0008-8846(02)00813-x

Google Scholar

[13] H. Wang, E. H. KO, Y. S., J. K. Jeon, J Ind. Eng. Chem., 26 (2008) 265-271.

Google Scholar

[14] T. Sebök, O. Stráněl, Wear resistance of polymer-impregnated mortars and concrete, Cement Concrete Res., 34 (2004) 1853-1858.

DOI: 10.1016/j.cemconres.2004.01.026

Google Scholar

[15] J. Y. Do, Y. S. Soh, Performance of polymer-modified self-leveling mortars with high polymer–cement ratio for floor finishing, Cement Concrete Res., 33 (2003) 1497-1505.

DOI: 10.1016/s0008-8846(02)01057-8

Google Scholar

[16] Y. Ohama, Recent progress in concrete-polymer composites, Adv. Cement Base Mater., 5 (1997) 31-40.

Google Scholar

[17] L. Verdolotti, E. D. Maio, M. Lavorgna, S. Iannace, L. Nicolais, Polyurethane-cement-based foams: Characterization and potential uses, J Appl. Polym. Sci., 107 (2008) 1-8.

DOI: 10.1002/app.24997

Google Scholar

[18] J. Nascimento, H. O. Martinelli A.E., D. M. A. Melo, A. C. V. Nóbrega, D. M. H. Martinelli, Pinto E.N.M.G. Polymers, Nanocomposite Systems with Photo-Electro-Ionic Properties and Applications, Mater. Sci. Forum., 591 (2005) 423-429.

DOI: 10.4028/www.scientific.net/msf.591-593.423

Google Scholar

[19] O. Lorenz, F. Haulena, O. Klebon, Rubber elastic behavior of polyurethane ionomers, Angew. Makromol Chem., 33 (1973) 159-165.

Google Scholar

[20] O. Lorenz, H. Hick, Investigation of the particle surface of anionic polyurethane dispersions with COO‐groups, Angew Makromol Chem., 72 (1978) 115-117.

Google Scholar

[21] Z. P. Bazant, M. T. Kazemi, Determination of fracture energy, process zone length and brittleness number from size effect with application to rock and concrete, Int. J Fract., 44 (1990) 111-131.

DOI: 10.1007/bf00047063

Google Scholar

[22] S. L. Xu, Y. H. Zhao, et al, The experimental study on the fracture energy of concrete using wedge splitting specimens, J. Hydroelectric Eng., 4 (2003) 15-17 (in Chinese).

Google Scholar