[1]
K. J. Moreno, A. F. Fuetes, J. García-Barriocanal, et al, Mechanochemical synthesis and ionic conductivity in the Gd2(Sn1 yZry)2O7 (0≤y≤1) solid solution, Journal of Solid State Chemistry, 179 (2006) 323-330.
DOI: 10.1016/j.jssc.2005.09.036
Google Scholar
[2]
D. W. Hwang, H. G. Kim, J. S. Lee, et al, Photocatalytic hydrogen production from water over M-doped La2Ti2O7 (M=Cr, Fe) under visible light irradiation, Journal of Physics and Chemistry B, 109 (2005) 2093-2102.
DOI: 10.1021/jp0493226
Google Scholar
[3]
J. M. Sohn, M. R. Kim, S. Ihl Woo, The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst, Catalysis Today, 83 (2003) 289-297.
DOI: 10.1016/s0920-5861(03)00249-9
Google Scholar
[4]
H. G. Kim, D. W. Hwang, S. W. Bae, et al, Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method, Catalysis Letters, 91 (2003) 193-198.
DOI: 10.1023/b:catl.0000007154.30343.23
Google Scholar
[5]
K.W. Li, H. L. Li, H. M. Zhang, et al, Hydrothermal synthesis of Eu3+-doped Y2Sn2O7 nanocrystals, Materials Research Bulletin, 41 (2006) 191-197.
DOI: 10.1016/j.materresbull.2005.07.018
Google Scholar
[6]
B. J. Kennedy, B. A. Hunter, C. J. Howard, Structural and bonding trends in tin pyrochlore oxides, Journal of Solid State Chemistry, 130 (1997) 58-65.
DOI: 10.1006/jssc.1997.7277
Google Scholar
[7]
Ismunandar, B. J. Kennedy, B. A. Huner, et al, Bonding and structural variation in doped Bi2Sn2O7, Journal of Solid State Chemistry, 131 (1997) 317-325.
DOI: 10.1006/jssc.1997.7387
Google Scholar
[8]
V. Ravi, S. Adyanthaya, M. Aslam, et al, Synthesis of tin bismuth pyrochlore, Materials Letters, 40 (1999) 11-13.
DOI: 10.1016/s0167-577x(99)00040-3
Google Scholar
[9]
Z. Lu, J. Wang, Y. Tang, et al, Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals, Journal of Solid State Chemistry, 177 (2004) 3075-3079.
DOI: 10.1016/j.jssc.2004.04.053
Google Scholar
[10]
H. Zhu, D. Jin, L. Zhu, et al, A general hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln: Y, La-Yb), Journal of Alloys and Compounds, 464 (2008) 508-513.
DOI: 10.1016/j.jallcom.2007.10.024
Google Scholar
[11]
Y. Wang, J. Zhu, X. Yang, et al, Preparation and characterization of LaNiO3 nanocrystals, Materials Research, 41 (2006) 1565-1570.
DOI: 10.1016/j.materresbull.2005.11.017
Google Scholar
[12]
Y. Tong, J. Zhu, L. Lu, et al, Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties, Journal of Alloys and Compounds, 465 (2008) 280-284.
DOI: 10.1016/j.jallcom.2007.10.097
Google Scholar
[13]
Y. Tong, Y. Wang, Salt-assistant combustion synthesis of nanocrystalline Nd2(Zr1-xSnx)2O7 (0≤x≤1), Materials Characterization, 60 (2009) 1382-1386.
DOI: 10.1016/j.matchar.2009.06.009
Google Scholar
[14]
W. Chen, F. Li, J. Yu, Salt-assisted combustion synthesis of highly dispersed pervoskite NdCoO3 nanoparticles, Materials Letters, 61 (2007) 397-400.
DOI: 10.1016/j.matlet.2006.04.069
Google Scholar