Multivariate Shrinkage for Image Denoising in Shearlet Domain

Article Preview

Abstract:

A new multivariate threshold function for image denoising in the shearlet transfrom is proposed. The new threshod exploits a multivariate normal inverse gaussian probability density function to model neighboring shearlet coefficients. Under this prior, a multivariate Bayesian shearlet estimator is derived by using the maximum a posteriori rule. Experimental results show that the new method achieves state-of-art performance in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM) index and visual quality than existing shearlet-based image denoising methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

966-969

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Donoho, I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika,81(1994) 42-45.

DOI: 10.1093/biomet/81.3.425

Google Scholar

[2] S. G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Processing, 9(2000) 1532-1546.

DOI: 10.1109/83.862633

Google Scholar

[3] S. Nadarajah, S. Kotz, The BKF Bayesian wavelet estimator, Signal Processing, 87(2007) 2268-2271.

DOI: 10.1016/j.sigpro.2007.02.013

Google Scholar

[4] F. Luisier, T. Blu, M. Unser, A new SURE approach to image denoising: interscale orthonormal wavelet thresholding, IEEE Transactions on Image Processing, 16(2007) 593-606.

DOI: 10.1109/tip.2007.891064

Google Scholar

[5] E. J. Candès, L. Demanet, D. L. Donoho, L. Ying, Fast discrete curvelet transforms, Multiscale Modeling Simulation, 5(2006) 861-899.

DOI: 10.1137/05064182x

Google Scholar

[6] M. N. Do, M. Vetterli, An efficient directional multiresolution image representation, IEEE Transactions on Image Processing, 14(2005) 2091-2106.

DOI: 10.1109/tip.2005.859376

Google Scholar

[7] S. Mallat, G. Peyre, Sparse directional image representations using the discrete shearlet transform, Numerical Algorithm, 44(2007) 25-46.

Google Scholar

[8] W. Lim, The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames, IEEE Transactions on Image Processing, 19(2010) 1166-1180.

DOI: 10.1109/tip.2010.2041410

Google Scholar

[9] Q. Guo, S. N. Yu, Image denoising using a multivariate shrinkage function in the curvelet domain, IEICE Electronics Express, 7(2010) 126-131.

DOI: 10.1587/elex.7.126

Google Scholar