[1]
Rivest, R., A. Shamir, and L. Aldeman: A Methoed for Obtaining DigitalSignatures and Public-key Cryptosystems. J. Communications of the ACM, 21(2) (1978). pp.120-126.
DOI: 10.1145/359340.359342
Google Scholar
[2]
Denis, T.s. and G. Rose: BIGNUM MATH: IMPLEMENTING CRYPTOGRAPHIC MULTIPLE PRECISION ARITHMETIC.(SYNGRESS 2006)
Google Scholar
[3]
Karatsuba, A. and Y. Ofman: Multiplication of Multidigit Numbers on Automata. Soviet Physics Doklady (English translation), 7(7) (1963). pp.595-596.
Google Scholar
[4]
Cook, S.A.: On the Minimum Computation Time of Functions, in Mathematics. May 1966, Harvard University.
Google Scholar
[5]
Schonhage, A. and V. Strassen: Schnelle Multiplikation großer Zahlen. Computing in Science & Engineering, 7 (1971). pp.139-144.
DOI: 10.1007/bf02242355
Google Scholar
[6]
Knuth, E.: The Art of Computer Programming.(Addison-Wesley 1997)
Google Scholar
[7]
Fürer, M.: Faster integer multiplication, in Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. 2007, ACM: San Diego, California, USA.
DOI: 10.1145/1250790.1250800
Google Scholar
[8]
Hars, L.: Applications of fast truncated multiplication in cryptography. EURASIP J. Embedded Syst., 2007(1) (2007). pp.3-3.
DOI: 10.1186/1687-3963-2007-061721
Google Scholar
[9]
Bernstein, D.J.: Multidigit Multiplication for Mathematicians. Advances in Applied Math, (to appear).
Google Scholar
[10]
Brent, R., et al.: Faster multiplication in GF(2)[x]. in: van der poorten, A,J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp.153-166. Springer, Heidelberg (2008)
Google Scholar
[11]
Brent, R. and P. Zimmermann: Modern computer arithmetic(June 2008)
Google Scholar
[12]
Bodrato, M.: Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0, in Proceedings of the 1st international workshop on Arithmetic of Finite Fields. (2007), Springer-Verlag: Madrid, Spain.
DOI: 10.1007/978-3-540-73074-3_10
Google Scholar
[13]
Nedjah, N. and L. de Macedo Mourelle: A review of modular multiplication methods and respective hardware implementation. Informatica, 30(1) (2006). pp.111-129.
Google Scholar
[14]
Xianjin, F. and L. Longshu. On Karatsuba Multiplication Algorithm. in Data, Privacy, and E-Commerce, (2007). ISDPE 2007. The First International Symposium on. 2007.
DOI: 10.1109/isdpe.2007.11
Google Scholar
[15]
Karatsuba, A. and Y. Ofman: Multiplication of Many-Digital Numbers by Automatic Computers, in Proceedings of the USSR Academy of Sciences. (1962). pp.293-294.
Google Scholar
[16]
Cormen, T.H., C.E. Leiserson, and R.L. Rivest: Introduction to Algorithms.(MIT Press 2000)
Google Scholar
[17]
Mainzer, K.: Thinking in Complexity: The Computational Dynamics of Matter, Mind, and Mankind.(Springer 2007)
Google Scholar
[18]
Levitin, A.V.: Introduction to the Design and Analysis of Algorithms.(Addison Wesley 2002)
Google Scholar
[19]
Brent, R.P.: Fast multiple-precision evaluation of elementary functions. Journal of the ACM, 23 (1976). pp.242-251.
DOI: 10.1145/321941.321944
Google Scholar
[20]
J. Von, J.S.: Fast Arithmetic for Polynomials Over F2 in Hardware, in In Proc. IEEE Information Theory Workshop. 2002.
Google Scholar
[21]
Ehtiba, F.O. and S. Azman: Multiplication and exponentiation of big integers with hybrid Montgomery and distributed Karatsuba algorithm, in Information and Communication Technologies: From Theory to Applications. (2004), Proceedings. 2004 International Conference.
DOI: 10.1109/ictta.2004.1307811
Google Scholar
[22]
Zura, D.: More on Squaring and Multiplying Large Integers. IEEE Transactions on Computers, 43(8) (August 1994). pp.899-908.
DOI: 10.1109/12.295852
Google Scholar
[23]
Sadiq, M. and J. Ahmed: Complexity Analysis of Multiplication of Long Integers. Asian Jurnal of Information Technology, 5(2) (2006).
Google Scholar
[24]
Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. Computers, IEEE Transactions on, 54(3) (2005). pp.362-369.
DOI: 10.1109/tc.2005.49
Google Scholar
[25]
Haining, F. and A. Hasan: Comments on "Five, Six, and Seven-Term Karatsuba-Like Formulae'. Computers, IEEE Transactions on, 56(5) (2007). pp.716-717.
DOI: 10.1109/tc.2007.1024
Google Scholar
[26]
Bernstein, D.J., in: Advances in Cryptology - Crypto 2009, S. Halevi, Editor. (2009), Springer-Verlag Berlin: Berlin. pp.317-336.
Google Scholar
[27]
Jahani, S.: ZOT-MK: A New Algorithm for Big Integer Multiplication, in Department of Computer Science. (June 2009), Universiti Sains Malaysia: Penang.
Google Scholar