A Note on the Exponential Diophantine Equation x2+q2m=2yp

Article Preview

Abstract:

ln this paper, using a deep result on the existence of primitive divisors of Lehmer numbers given by Y. Bilu, G. Hanrot and P. M. Voutier, we prove that the equation has no positive integer solution (x, y, m, p, q), where p and q are odd primes with p>3, gcd(x, y)=1 and y is not the sum of two consecutive squares.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2650-2653

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Bilu, G. Hanrot and P. M. Voutier (with an appendix by M. Mignotte), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, 75-122 (2001).

DOI: 10.1515/crll.2001.080

Google Scholar

[2] Z. Ke, On the diophantine equation Sci. Sinica, 14(5), 457-460 (1965).

Google Scholar

[3] V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'equation , Nouv. Ann. Math., 1(9), 178-181 (1850).

Google Scholar

[4] W. Ljunggren, Some remarks on the diophantine equations and, J. Londom Math. Soc., 41(4), 542-544 (1966).

Google Scholar

[5] A. Mourad, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordx., 18(2), 299-313(2006).

DOI: 10.5802/jtnb.545

Google Scholar

[6] I. Pink, On the diophantine equation , Publ. Math. Debrecen. 65(1-2), 205-213(2004).

Google Scholar

[7] I. Pink and Sz. Tengely, Full powers in arithmetic progressions, Publ. Math. Debrecen. 57(3-4), 535-545(2000).

DOI: 10.5486/pmd.2000.2422

Google Scholar

[8] Sz. Tengely, On the diophantine equation F(x)= G(y), Acta Arith., 110(2), 185-200(2003).

Google Scholar

[9] Sz. Tengely, On the diophantine equation , lndag. Math., New Ser., 15(2), 291-304(2004).

Google Scholar

[10] Sz. Tengely, On the diophantine equation , Acta Arith., 127(1), 71-86(2007).

Google Scholar

[11] P. M. Voutier. Primitive divisors of Lucas and Lehmer sequences. Math. Comp., 64(5), 869-888(1995).

DOI: 10.1090/s0025-5718-1995-1284673-6

Google Scholar

[12] P. –Z. Yuan, On the diophantine equation , lndag. Math., New Ser., 16(2), 301-320(2005).

Google Scholar