[1]
J J Capowski, J A Kylstra, S F Freedman, A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity, Retina, 1995; 15: 6, 490-499.
DOI: 10.1097/00006982-199515060-00006
Google Scholar
[2]
S F Freedman, J A Kylstra, J J Capowski, T D Realini, C Rich, D Hunt, Observer sensitivity to retinal vessel diameter and tortuosity in retinopathy of prematurity: A model system, Journal of Pediatr Ophthalmol. Strabismus 1996; 33, 248-254.
DOI: 10.3928/0191-3913-19960701-10
Google Scholar
[3]
W E Hart, M Goldbaum; B Cote, P Kube, M R Nelson, Measurement and classification of retinal vascular tortuosity, International Journal of Medical Informatics, 1999; 53: 2, 239-252.
DOI: 10.1016/s1386-5056(98)00163-4
Google Scholar
[4]
W. Lotmar,A. Freiburghaus, and D. Bracher. Measurement of vessel tortuosity on fundus photographs, " Graefe, s Archive for clinical and experimental Ophthalmology, vol. 211, pp.49-57, (1979).
DOI: 10.1007/bf00414653
Google Scholar
[5]
E. Bullit, G. Gerig, S. Pizer, W. Lin, and S. Aylward, Measuring tortuosity of the intracerebral vasculature from MRA images, IEEE Trans. Med. Imaging, vol. 22, no. 9, pp.1163-1171, (2003).
DOI: 10.1109/tmi.2003.816964
Google Scholar
[6]
Smedby O, Hogman N, Nilsson S, Erikson U, Olsson AG, Walldius G. Two-dimentional tortuosity of the superficial femoral artery in early atherosclerosis,. J Vasc Res 1993; 30: 181-91.
DOI: 10.1159/000158993
Google Scholar
[7]
Johnson MJ, Dougherty G, Robust measures of three-dimensional vascular tortuosity based on the minimum curvature of approximating polynomial spline fits to the vessel mid-line,. Med Eng Phys 2007; 29: 677-690.
DOI: 10.1016/j.medengphy.2006.07.008
Google Scholar
[8]
Enrico Grisan, Marco Foracchia, Alfredo Ruggeri, A novel method for the automatic grading of retinal vessel tortuosity, IEEE Transactions on Medical Imaging, VOL. 27, NO. 3, MARCH (2008).
DOI: 10.1109/tmi.2007.904657
Google Scholar
[9]
E. Trucco et. al., Modelling the tortuosity of Retinal Vessels: Does Calibre play a role?, IEEE trans on Biomedical Engg vol. 57, pp.2239-2247, (2010).
DOI: 10.1109/tbme.2010.2050771
Google Scholar
[10]
Geoffrey Dougherty and J. Varro, A quantitative index for the measurement of the tortuosity of blood vessels, Medical Engineering & Physics, vol. 22, pp.567-574, (2000).
DOI: 10.1016/s1350-4533(00)00074-6
Google Scholar
[11]
Wallace DK, Zhao Z, Freedman SF, A pilot study using ROPtool, to quantify plus disease in retinopathy of prematurity. J AAPOS2007; 11(4): 381-387.
DOI: 10.1016/j.jaapos.2007.04.008
Google Scholar
[12]
Aslam T, Fleck B, Patton N, Trucco M, Azegrouz H (2009) Digital image analysis of plus disease in retinopathy of prematurity. Acta Ophthalmol 87: 368-377.
DOI: 10.1111/j.1755-3768.2008.01448.x
Google Scholar
[13]
Danu Onkaew, Rashmi Turior, Bunyarit Uyyanonvara, Nishihara Akinori, Chanjira Sinthanayothin, Automatic Retinal Vessel Tortuosity Measurement using Curvature of Improved Chain Code, International Conference on Electrical, Control and Computer Engineering (InECCE 2011), pp.183-186.
DOI: 10.1109/inecce.2011.5953872
Google Scholar
[14]
RashmiTurior , Danu Onkaew, Bunyarit Uyyanonvara, Robust Metrics for Retinal Vessel Tortuosity Measurement using Curvature Based on Improved Chain Code , International Conference on Biomedical Engineering (ICBME 2011), pp.217-221, 10-12 December 2011 Manipal, India (December (2011).
DOI: 10.1109/inecce.2011.5953872
Google Scholar
[15]
A. Webb, Statistical Pattern Recognition, Oxford University Press, 1999: Chapter 8.
Google Scholar
[16]
M. Dash and H. Liu, Feature Selection for Classification, Intelligent Data Analysis 1, 1997: 131-156.
Google Scholar