Efficient Identification of Frequent Family Subtrees in Tree Database

Article Preview

Abstract:

This paper introduces a new type of problem called the frequent common family subtree mining problem for a collection of leaf-labeled trees and presents some characteristics for the problem. It proposes an algorithm to find frequent common families in trees. To its applicability, the proposed method has been applied to both several synthetic data sets and a real data set.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3165-3170

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rajaraman, J. D. Ullman: Mining of Massive Datasets, Cambridge University Press (2012).

Google Scholar

[2] R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules. In: Proc. of Int. Conf. on Very Large Data Bases, (1994).

Google Scholar

[3] Y. Chi, S. Nijssen, R. R. Muntz, J. N. Kok: Frequent Subtree Mining – An Overview. Foundamenta Informaticae, 11 (2005) 1001-1038.

Google Scholar

[4] D. Charkrabarti, C. Faloutsos: Graph Mining: Laws, Generators, and Algorithms. ACM Computing Surveys, 38 (2006) 1-69.

DOI: 10.1145/1132952.1132954

Google Scholar

[5] R. A. Mohammadzadeh, M. H. Chehreghani, A. Zarnani, M. Rahgozar: W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees. Int. Journal of Engineering and Applied Sciences, 1(1) (2005) 60-63.

Google Scholar

[6] A. Deepak, D. Frenandez-Baca, S. Tirthapura, M. J. Sanderson, M. M. McMahon: EvoMiner: Frequent Subtree Mining in Phylogenetic Databases, Technical Report 11-08, Computer Science, Iowa State University (2011).

DOI: 10.1007/s10115-013-0676-0

Google Scholar

[7] K. M. Lee, K. M. Lee: Medoid Determination in Deterministic Annealing-based Pairwise Clustering, Int. J. of Fuzzy Logic and Intelligent Systems, 11(3) (2011) 178-183.

DOI: 10.5391/ijfis.2011.11.3.178

Google Scholar

[8] S. Zhang, J. T. L. Wang: Mining Frequent Agreement Subtrees in Phylogenetic Databases, In: Proc. of the 6th SIAM Int. Conf. on Data Mining, (2006) 222-233.

DOI: 10.1137/1.9781611972764.20

Google Scholar

[9] S. Zhang, J. T. L. Wang: Discovering Frequent Agreement Subtrees from Phylogenetic Data, IEEE Trans. on Knowledge and Engineering, 20(1) (2008) 1-15.

DOI: 10.1109/tkde.2007.190676

Google Scholar

[10] M. Nei, S. Kumar: Molecular Evolution and Phylogenetics, (2000).

Google Scholar

[11] F. Luccio, A. M. Enriquz, P.O. Rieumont, L. Pagli: Bottom-up Subtree Isomorphism for Unordered Labeled Trees, Technical Report TR-01-14, Universita Di Pisa (2004).

Google Scholar

[12] M. J. Zaki.: Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications. IEEE Trans. on Knowledge and Data Engineering, 17(8) (2005).

DOI: 10.1109/tkde.2005.125

Google Scholar

[13] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, S. Arikawa.: Efficient Substructure Discovery from Large Semi-Structured Data, In: Proc. of 2nd SIAM Int. Conf. on Data Mining (2002).

DOI: 10.1137/1.9781611972726.10

Google Scholar

[14] T. Asai, H. Arimura, T. Uno, S. Nakano: Discovering Frequent Substructures in Large Unordered Trees. In: Proc. of the 6th Int. Conf. on Discovery Science (2003).

DOI: 10.1007/978-3-540-39644-4_6

Google Scholar

[15] S. Nijssen, J. N. Kok: Efficient Discovery of Frequent Unordered Trees. In: Proc. of First Int. Workshop on Mining Graphs, Trees and Sequences (2003).

Google Scholar