[1]
M. Beckstead, Recent progress in modeling solid propellant combustion, Combustion, Explosion, and Shock Waves (CESW), Vol. 42, No. 6, Nov., 2006, pp.623-641 (19).
DOI: 10.1007/s10573-006-0096-5
Google Scholar
[2]
N. Kubota, Propellants & Explosives-Thermochemical Aspects of Combustion, Wiley, 2007.
Google Scholar
[3]
W. M. Graven, and F. J. Long, Kinetics and mechanisms of the two opposing reactions of the equilibrium CO + H2O ↔ CO2 + H2, J. Amer. Chem. Soc., 76(1954), pp.2602-7; 76(1954), p.6421.
DOI: 10.1021/ja01639a002
Google Scholar
[4]
V. F. Kochubei, and F. B. Moin, Kinetics of the reaction of CO2 with H2, Kin. Kat. 10, 1969.
Google Scholar
[5]
D. L. Baulch, and D. D. Drysdale, An evaluation of the Rate Data for the Reaction CO+OH ↔ CO2+H, Combustion and Flame, 23 (1974), pp.215-225.
DOI: 10.1016/0010-2180(74)90059-5
Google Scholar
[6]
F. Bustamante, R. M. Enick, A. V. Cugini, R. Killmeyer, B. H. Howard, K. S Rothenberger, M. Ciocco, B. D. Morreale, S. Chattopadhay, and S. Shi, High temperature kinetics of the homogeneous reverse water-gas shift reaction, AIChE J., 50(5), 2004, pp.1028-41.
DOI: 10.1002/aic.10099
Google Scholar
[7]
R. D. Rugescu, Chemical Freezing, Engineering Meridian, TUM Chisinau, Moldova, 2005.
Google Scholar
[8]
R. D. Rugescu, Const. Predoiu, C. Nae, R. F. Bacaran, and V. M. Pricop, Isochoric low speed processes within calorimeters show unexpected chemical freezing, AEROSPATIAL 2008, 2008.
Google Scholar
[9]
K. N. C. Bray, Recombination in a hypersonic wind-tunnel, J. Fluid Mech., 6(1), 1959.
Google Scholar
[10]
A. A. Westenberg, and S. Favin, Nozzle Flow with Complex Chemical Reaction, Johns Hopkins Univ., Appl. Phys. Lab, AD0275464, (1962)
Google Scholar
[11]
S. R. Schuricht, Numerical simulation of high speed chemically reacting flows, Purdue Univ., AAT 3075724, 2001.
Google Scholar
[12]
J. C. Williams, Sudden freezing point in nonequilibrium nozzles, AIAA J., 3(6), III, 1965.
Google Scholar
[13]
D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, Th. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, Evaluated Kinetic Data for Combustion Modeling: Supplement II, J. Phys. Chem. Ref. Data, Vol. 34, No. 3, 2005.
DOI: 10.1063/1.1748524
Google Scholar
[14]
E. F. Armstrong, and T. P. Hilditch, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 97, 1920, pp.265-273.
Google Scholar
[15]
G. Hadman, H. W. Thompson, and C. N. Hinshelwood, The oxidation of carbon monoxide, Proc. Roy. Soc., A137 (1932), pp.87-101.
Google Scholar
[16]
B. W. Bradford, Water-gas reaction in low-pressure explosions, J. Chem. Soc., 1933, p.1557.
Google Scholar
[17]
G. L. Tingey, Kinetics of the water-gas equilibrium reaction. I, J. Phys. Chem., 70(5), 1966.
Google Scholar
[18]
T. Just, and S. Stepanek, 7th Shock Tube Symposium, 1971.
Google Scholar
[19]
S. Benny, (2010), High Temperature Water Gas Shift Catalysts: A Computer Modelling Study, PhD Thesis, Dept. of Chemistry, Univ. College London, Johnson Matthey Tech. Centre, 2010.
Google Scholar
[20]
Newsome, D. S., Catalysis Reviews: Science and Engineering, 21, 275, 1980.
Google Scholar