Misbehavior in High Temperature Equilibrium of Water-Gas Reaction

Article Preview

Abstract:

The observation that the chemical equilibrium between the combustion products of solid propellant samples within static calorimeters is unexpectedly freezing at high temperatures is proved through a general numerical simulation of the isochoric cooling with chemical reactions between the gaseous products. A proprietary, direct linearization method of thermochemical computation is used that enables following any chemical reaction in equilibrium with high convergence. The observed chemical freezing within calorimeters is proved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

346-351

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Beckstead, Recent progress in modeling solid propellant combustion, Combustion, Explosion, and Shock Waves (CESW), Vol. 42, No. 6, Nov., 2006, pp.623-641 (19).

DOI: 10.1007/s10573-006-0096-5

Google Scholar

[2] N. Kubota, Propellants & Explosives-Thermochemical Aspects of Combustion, Wiley, 2007.

Google Scholar

[3] W. M. Graven, and F. J. Long, Kinetics and mechanisms of the two opposing reactions of the equilibrium CO + H2O ↔ CO2 + H2, J. Amer. Chem. Soc., 76(1954), pp.2602-7; 76(1954), p.6421.

DOI: 10.1021/ja01639a002

Google Scholar

[4] V. F. Kochubei, and F. B. Moin, Kinetics of the reaction of CO2 with H2, Kin. Kat. 10, 1969.

Google Scholar

[5] D. L. Baulch, and D. D. Drysdale, An evaluation of the Rate Data for the Reaction CO+OH ↔ CO2+H, Combustion and Flame, 23 (1974), pp.215-225.

DOI: 10.1016/0010-2180(74)90059-5

Google Scholar

[6] F. Bustamante, R. M. Enick, A. V. Cugini, R. Killmeyer, B. H. Howard, K. S Rothenberger, M. Ciocco, B. D. Morreale, S. Chattopadhay, and S. Shi, High temperature kinetics of the homogeneous reverse water-gas shift reaction, AIChE J., 50(5), 2004, pp.1028-41.

DOI: 10.1002/aic.10099

Google Scholar

[7] R. D. Rugescu, Chemical Freezing, Engineering Meridian, TUM Chisinau, Moldova, 2005.

Google Scholar

[8] R. D. Rugescu, Const. Predoiu, C. Nae, R. F. Bacaran, and V. M. Pricop, Isochoric low speed processes within calorimeters show unexpected chemical freezing, AEROSPATIAL 2008, 2008.

Google Scholar

[9] K. N. C. Bray, Recombination in a hypersonic wind-tunnel, J. Fluid Mech., 6(1), 1959.

Google Scholar

[10] A. A. Westenberg, and S. Favin, Nozzle Flow with Complex Chemical Reaction, Johns Hopkins Univ., Appl. Phys. Lab, AD0275464, (1962)

Google Scholar

[11] S. R. Schuricht, Numerical simulation of high speed chemically reacting flows, Purdue Univ., AAT 3075724, 2001.

Google Scholar

[12] J. C. Williams, Sudden freezing point in nonequilibrium nozzles, AIAA J., 3(6), III, 1965.

Google Scholar

[13] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, Th. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, Evaluated Kinetic Data for Combustion Modeling: Supplement II, J. Phys. Chem. Ref. Data, Vol. 34, No. 3, 2005.

DOI: 10.1063/1.1748524

Google Scholar

[14] E. F. Armstrong, and T. P. Hilditch, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 97, 1920, pp.265-273.

Google Scholar

[15] G. Hadman, H. W. Thompson, and C. N. Hinshelwood, The oxidation of carbon monoxide, Proc. Roy. Soc., A137 (1932), pp.87-101.

Google Scholar

[16] B. W. Bradford, Water-gas reaction in low-pressure explosions, J. Chem. Soc., 1933, p.1557.

Google Scholar

[17] G. L. Tingey, Kinetics of the water-gas equilibrium reaction. I, J. Phys. Chem., 70(5), 1966.

Google Scholar

[18] T. Just, and S. Stepanek, 7th Shock Tube Symposium, 1971.

Google Scholar

[19] S. Benny, (2010), High Temperature Water Gas Shift Catalysts: A Computer Modelling Study, PhD Thesis, Dept. of Chemistry, Univ. College London, Johnson Matthey Tech. Centre, 2010.

Google Scholar

[20] Newsome, D. S., Catalysis Reviews: Science and Engineering, 21, 275, 1980.

Google Scholar