[1]
M. Blessing, G Konig, C. Kruger, U. Michels and V. Schwarz: Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation.
DOI: 10.4271/2003-01-1358
Google Scholar
[2]
Hiroyasu, H. Arai, M. and Shimizu, M.: Breakup length of a liquid jet and internal flow in a.
Google Scholar
[3]
Sotcriou, C., Andrews, R. and Smith, M.: Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization (1995).
DOI: 10.4271/950080
Google Scholar
[4]
N. Tamaki, M. Shimizu, and H. Hiroyasu.: Enhancement of the atomization of a liquid jet by cavitation in a nozzle hole (2001).
DOI: 10.1615/atomizspr.v11.i2.20
Google Scholar
[5]
Mulemane, A., Subramaniyam, S., Lu, P., Han, J., Lai, M., and Poola, R.: Comparing.
Google Scholar
[6]
Payri, R., Margot, X., and Salvador, F.: A numerical study of the influence of diesel nozzle geometry on the inner cavitating flow (2002).
DOI: 10.4271/2002-01-0215
Google Scholar
[7]
Vortmann, C., Schnerr, G., and Seelecke, S.: Thermo-dynamic modeling and simulation of cavitating nozzle flow (2003).
DOI: 10.1016/s0142-727x(03)00003-1
Google Scholar
[8]
Hirt, C. W. and Nichols, B. D. Comput.: Volume of fluid (VOF) method for the dynamics of free boundaries (1981), pp.201-225.
DOI: 10.1016/0021-9991(81)90145-5
Google Scholar
[9]
Sauer, J.: Instationär Kavitierende Strömungen-Einneues Modell, basierend auf Front Capturing (VoF) und Blasendynamik (2001).
Google Scholar
[10]
Avva, R. K., Singhal, A., and Gibson, D. H.: An enthalpy based model of cavitation (1995).
Google Scholar
[11]
Schmidt,D. P., Rutland, C. J., Corradini, M. L.: A fully compressible two-dimensional model of high speed cavitating nozzles. Atomization and Sprays (1999).
DOI: 10.1615/atomizspr.v9.i3.20
Google Scholar
[12]
Singhal, A. K., Athavale, M.M., Li, H., Jiang Yul.: Mathematical basis and validation of the full cavitation model (2002) pp.617-624.
DOI: 10.1115/1.1486223
Google Scholar