Electrochemical Characteristics of Melt Spun Nanocrystalline and Amorphous Mg20Ni6M4 (M=Co, Cu) Alloys Applied to Ni-MH Battery

Article Preview

Abstract:

The melt-spinning technique was used to synthesize the Mg20Ni6M4 (M=Co, Cu) alloys with nanocrystalline and amorphous structure. The microstructures of the as-spun alloys were characterized by XRD and TEM. The electrochemical hydrogen storage properties of the alloys were measured. The results show that the as-spun (M=Cu) alloys hold an entire nanocrystalline structure, whereas the as-spun (M=Co) alloys display a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy. The discharge capacity and high rate discharge ability (HRD) of the alloys notably augment with the rising of the spinning rate. The action of the melt spinning on the cycle stability of the alloys is associated with the substitution element. For the (M=Co) alloy, the melt spinning exerts a dramatically positive impact, whereas for the (M=Cu) alloy, its impact is negative.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. P. Jain, C. Lal, A. Jain, Int. J. Hydrogen storage in Mg: A most promising material, Hydrogen Energy Vol. 35 (2010) 5133-5144.

DOI: 10.1016/j.ijhydene.2009.08.088

Google Scholar

[2] I. P. Jain, Int. J. Hydrogen the fuel for 21st century, Hydrogen Energy Vol. 34 (2009) 7368-7378.

DOI: 10.1016/j.ijhydene.2009.05.093

Google Scholar

[3] T. Spassov, U. Köster, Hydrogenation of amorphous and nanocrystalline Mg-based alloys, J. Alloy Compd. Vol. 287 (1999) 243-250.

DOI: 10.1016/s0925-8388(99)00035-3

Google Scholar

[4] T. Spassov, U. Köster, Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7alloy, J. Alloy Compd. Vol. 279 (1998) 279-286.

DOI: 10.1016/s0925-8388(98)00680-x

Google Scholar

[5] G. K. Williamson, W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. Vol. 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[6] S. Orimo, H. Fujii, Appl. Materials science of Mg-Ni-based new hydrides, Phys. A 72 (2001) 167-186.

DOI: 10.1007/s003390100771

Google Scholar

[7] J. J. Jiang, M. Gasik. J. An electrochemical investigation of mechanical alloying of MgNi-based hydrogen storage alloys, Power Sources Vol. 89 (2000) 117-124.

DOI: 10.1016/s0378-7753(00)00400-6

Google Scholar

[8] Y. H. Zhang, B. W. Li, H. P. Ren, Z. G. Pang, S. H. Guo, X. L. Wang, An electrochemical investigation of melt-spun nanocrystalline and amorphous Mg2Ni-type electrode alloys, J. Alloys Compd. Vol. 477 (2009) 759-763.

DOI: 10.1016/j.jallcom.2008.10.098

Google Scholar

[9] G. Zheng, B. N. Popov, R. E. White, Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4. 25 Al0. 75 electrode in alkaline aqueous solution, J. Electrochem. Soc. Vol. 142 (1995) 2695-2698.

DOI: 10.1149/1.2050076

Google Scholar