Nanocomposited and Functionally Graded ZrN/HA Coatings on cp-Ti by RF Magnetron Sputtering

Article Preview

Abstract:

Nanocomposited and Functionally graded (FG) ZrN/hydroxyapatite coatings with good mechanical strength and biocompatibility were prepared on cp-Ti substrate for biomedical applications and detailed analysis of the nanocomposite coatings for its structural, morphological, topographical and biocompatibility properties were carried out. Crystallite size of the coating for the functionally graded coatings was smaller compared to that of nanocomposite coatings. The arrangement of grains was observed to be denser in the FG coatings due to the decrease in the grain size. Hardness and modulus of FG coatings were observed to be greater than those of nanocomposite coating, which was attributed to the reduction in the crystallite size in FG coatings. Both ZrN/HA nanocomposite and functionally graded coatings was found to induce biomineralization formation, suggesting both are promising candidates for the future biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wang, X. Ma, W. Ling, Y. Zheng, Adv. Sci. Lett. 4 (2011) 1509.

Google Scholar

[2] B.R. Winton, M, Ionescu, C. Lukey, M.R. Wilson, I. P. Nevirkovets, S.X. Dou, Adv. Sci. Lett. 4 (2011) 431.

Google Scholar

[3] A. Shukla, M.K. Patra, M.  Mathew, S. Songara V.K. Singh, G.S. Gowd, S.R. Vadera, N.  Kumar, Adv. Sci. Lett. 3 (2010) 161.

DOI: 10.1166/asl.2010.1103

Google Scholar

[4] N. Suansuwan and M.V. Swain: J. Dent. 31 (2003) 509.

Google Scholar

[5] S.S. Wang, Y. Xia, L.B. Zhang, H.B. Guang, M. Shen and F.M. Zhang, Surf. Coat. Technol. 205, 1886 (2010).

Google Scholar

[6] A. J. Nathanael, J. H. Lee and S. I. Hong. Adv. Sci. Lett. 14 (2012) 797-802.

Google Scholar

[7] Y. Cheng and Y. F. Zheng, IEEE Trans. Plasma Sci. 34 (2006) 1105.

Google Scholar

[8] R. Hubler, A. Cozza, T. L. Marcondes, R. B. Souza, and F. F. Fiori, Surf. Coat. Technol. 142–144 (2001) 1078.

Google Scholar

[9] D. Qiu, A. Wang, and Y. Yin, Appl. Surf. Sci. 257 (2010) 1774.

Google Scholar

[10] Y. Xin, C. Liu, K. Huo, G. Tang, X. Tian and P.K. Chu, Surf. Coat. Technol. 203 (2009) 2554.

Google Scholar

[11] A. J. Nathanael, D. Mangalaraj, P.C. Chen and N. Ponpandian, J. Nanopart. Res. 13 (2011) 1841.

Google Scholar

[12] A. J. Nathanael, S. I. Hong, D. Mangalaraj, N. Ponpandian, P. C. Chen, Cryst. Growth Des. 12 (2012) 3565–3574.

Google Scholar

[13] R. Narayanan, S.K. Seshadri, T.Y. Kwon and K.H. Kim, Scr. Mater. 56 (2007) 229.

Google Scholar

[14] Y.W. Song, D.Y. Shan and E.H. Han, Mater. Lett. 62 (2008) 3276.

Google Scholar

[15] A. J. Nathanael, D. Mangalaraj, N. Ponpandian, Compos. Sci. Technol. 70 (2010) 1645.

Google Scholar

[16] A. J. Nathanael, N. S. Arul, N. Ponpandian, D. Mangalaraj, P.C. Chen, Thin Solid Films 518 (2010) 7333.

DOI: 10.1016/j.tsf.2010.04.105

Google Scholar

[17] A. J. Nathanael, D. Mangalaraj, P. C. Chen, N. Ponpandian, Compos. Sci. Technol. 70 (2010) 419.

Google Scholar

[18] S. P. Sharma, J. M. Ting, Z. K. Chang, Adv. Sci. Lett. 3 (2010) 74.

Google Scholar

[19] S.I. Hong, K.H. Lee, M.E. Outslay and D.H. Kohn, J. Mater. Res. 23 (2008) 478.

Google Scholar

[20] S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng and F.S. Shieu, Appl. Surf. Sci. 257 (2011) 7709.

Google Scholar

[21] S. Zhang, D. Sun, Y. Fu and H. Du: Surf. Coat. Technol. 198 (2005) 2.

Google Scholar