[1]
M. du Toit, Nitrogen control during autogenous arc welding of stainless steel – Part 1, experimental observations, J. Welding Vol. 82(8) (2003) 219–224.
DOI: 10.1007/bf03266398
Google Scholar
[2]
M. du Toit, P.C. Pistorius, Nitrogen control during the autogenous arc welding of stainless steel – Part 2, A kinetic model for nitrogen absorption and desorption, J. Welding Vol. 82(9) (2003) 231–237.
DOI: 10.1007/bf03266398
Google Scholar
[3]
F. Rui-dong, Q. Liang, W. Cun-yu, Influence of welding parameters on nitrogen content in welding metal of 32Mn – 7Cr – 1Mo – 0. 3N austenitic steel, J. Cent. South Univ. Tech. Vol. 12 (2005) 22–26.
DOI: 10.1007/s11771-005-0195-6
Google Scholar
[4]
T. Kuwana, H. Kokawa, The nitrogen absorption of iron weld metal during gas tungsten arc welding, Trans. of the Japan Welding Society Vol. 17(1) (1986) 20–26.
DOI: 10.1080/09507119609549031
Google Scholar
[5]
R.K. Okagawa, R.D. Dixon, D.L. Olson, The influence of nitrogen from welding on stainless steel weld metal microstructure, J. Welding Vol. 62(8) (1983) 204–209.
Google Scholar
[6]
J.D. Katz, T.B. King, The kinetics of nitrogen absorption and desorption from a plasma arc by molten iron, Metall. Trans. B Vol. 20B (1989) 175–185.
DOI: 10.1007/bf02825598
Google Scholar
[7]
T. Kuwana, H. Kokawa, M. Saotome, Quantitative prediction of nitrogen absorption by steel during gas tungsten arc welding, Proc. 3rd Int. Seminar Numerical Analysis of a Weldability (1995).
Google Scholar
[8]
M. Du Toit, P.C. Pistorius, The influence of oxygen on the nitrogen content of autogenous stainless steel arc welds, J. Welding Vol. 86(8) (2007) 222–230.
Google Scholar
[9]
M. Du Toit, P.C. Pistorius, Nitrogen control during the autogenous arc welding of stainless steel, IIW Document Ix-2008–03 (2003).
DOI: 10.1007/bf03266398
Google Scholar
[10]
I. Woo, Y. Kikuchi, Weldability of high nitrogen stainless steel, J. ISIJ International Vol. 42(12) (2002) 1334–1343.
DOI: 10.2355/isijinternational.42.1334
Google Scholar
[11]
B. Holmberg, Progress on welding of high nitrogen alloyed austenitic stainless steels, J. Welding in the World Vol. 46(1-2) (2002) 3–9.
DOI: 10.1007/bf03266359
Google Scholar
[12]
Q.J. Allum, Nitrogen absorption from welding arc, IIW Document, International Institute of welding Vol. 212 (1987) 659–686.
Google Scholar
[13]
T. Sakamoto, H. Nakajima, Nitrogen-containing 25Cr – 13Ni stainless steels as a cryogenic structure material, J. Adv. Cryogenic Eng. Vol. 30 (1984) 137–144.
DOI: 10.1007/978-1-4613-9868-4_17
Google Scholar
[14]
G. Den Ouden, O. Greiebling, Nitrogen absorption during arc welding, Proc. 2nd Int. Conf. Trends in Weld. Res. 431–435, ASM International.
Google Scholar
[15]
P.R. Reed, Nitrogen in austenitic stainless steels, J. The Min., Met. Mat. Soc. Vol. (3) 16–21.
Google Scholar
[16]
T. Kuwana, H. Kooawa, K. Naitoh, The nitrogen absorption of stainless steel weld metal during gas tungsten arc welding, Trans. of the Japan Welding Society Vol. 17(2) (1986) 117–123.
DOI: 10.2207/qjjws.2.669
Google Scholar
[17]
T. Kobayashi, T. Kuwana, Y. Kikuchi, Arc atmosphere and nitrogen content of weld metal, Welding in the World Vol. 5–2 (1967) 58–73.
Google Scholar
[18]
L. Iorio, M. Cortie, R. Jones, Technical Note : Solubility of nitrogen in experimental low-nickel austenitic stainless steels, J. The South African Ins. of Min. and Metal. (1994) 173–177.
Google Scholar
[19]
M. Coetzee, P.G.H. Pistorius, The welding of experimental low-nickel Cr-Mn-N stainless steel containing copper, J. The South African Ins. of Min. and Metal. (1996) 99–108.
Google Scholar