Quantifying Fractal Dynamics of Metallogenic Systems with Detrended Fluctuation Analysis

Article Preview

Abstract:

In this paper, we analysed fractional dynamics behavior in metallogenic elements grade series, using detrended fluctuation analysis (DFA), with the objective to explore and understand the underlying dynamic mechanism. Our results show that the metallogenic elements grade series are the scale invariance and the long-range correlation. As in the case of element grade dynamics, the DFA scaling exponents can be used to discriminate mineral intensity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-30

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. M. Cheng. Multifractality and spatial statistics. Computer & Geosciences, vol. 25 (1999): 949-962.

Google Scholar

[2] D. L. Turcotte. Fractals and Chaos in Geology and Geophysics, Cambridge University Press, (1997).

Google Scholar

[3] L. Wan, Q. F. Wang, J. Deng. Identification of mineral intensity along drifts in the Dayingezhuang deposit, Jiaodong gold province, China. Resource Geology, vol. 60(2010): 98-108.

DOI: 10.1111/j.1751-3928.2010.00117.x

Google Scholar

[4] P. D. Zhao. Quantitative geologic method and its application. Beijing: Higher Education Press, 2004. (in Chinese).

Google Scholar

[5] J. Beran: Statistics for long-memory processes. Chapman & Hall, New York, (1994).

Google Scholar

[6] C.K. Peng, S.V. Buldyrev, S. Harlin, et al. Mosaic organization of DNA nucleotides. Physical Review E, vol. 49 (1994): 1685-1689.

Google Scholar

[7] C. K. Peng, S. Havlin, H.E. Stanley, Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, vol. 5 (1995): 82-87.

DOI: 10.1063/1.166141

Google Scholar

[8] M. Marchesi, T. Lux. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, vol. 397(1999) : 498-500.

DOI: 10.1038/17290

Google Scholar

[9] L. Telesca, M. Macchiato. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis investigated by the detrended fluctuation analysis of interevent time series. Chaos , Solitons and Fractals , vol. 19(2004): 377 - 385.

DOI: 10.1016/s0960-0779(03)00050-x

Google Scholar

[10] J.W. Kantelhardt, E. Koseielny-Bunde, H. A. Rego. Detecting long-range correlations with detrended fluctuation analysis. Physica A, vol. 295(2001): 441-454.

DOI: 10.1016/s0378-4371(01)00144-3

Google Scholar

[11] Q.F. Wang, J. Deng , H. Liu . Fractal models fror estimating local reserves with different mineralization qualities and spatial variations. Journal of Geochemical Exploration, vol. 108(2011): 196-208.

DOI: 10.1016/j.gexplo.2011.02.008

Google Scholar

[12] J. Deng, Q.F. Wang , L. Wan. Self-similar fractal analysis of gold mineralization of Dayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal of Geochemical Exploration, vol. 102(2009): 95-102.

DOI: 10.1016/j.gexplo.2009.03.003

Google Scholar

[13] J. Deng, L.Q. Yang, S. Z. Sun. A Metallogenic Model of Gold Deposits of the Jiaodong Granite-Greenstone Belt. Acta Geologica Sinica, vol. 77(2003): 537-546.

DOI: 10.1111/j.1755-6724.2003.tb00134.x

Google Scholar