[1]
C. Canudas de Wit, H. Olssen, K. J. Astrom and P. Lischinsky, "A new model for control of systems with friction," IEEE Transactions on Automatic Control, vol. 40, no. 3, 1995, pp.419-425.
DOI: 10.1109/9.376053
Google Scholar
[2]
C. Canudas de Wit and P. Lischinsky, "Adaptive friction compensation with partially known dynamic friction model," International Journal of Adaptive Control and Signal Processing vol. 11, no. 1, 1997, pp.65-80.
DOI: 10.1002/(sici)1099-1115(199702)11:1<65::aid-acs395>3.0.co;2-3
Google Scholar
[3]
V. Lampaert, F. Al-Bender and J. Swevers, "A generalized maxwellslip friction model appropriate for control purposes," IEEE International Conference on Physics and Control, St. Petersburg, Russia,2003.
DOI: 10.1109/phycon.2003.1237071
Google Scholar
[4]
F. Al-Bender, V. Lampaert and J. Swevers, "A novel generic model at asperity level for dry friction force dynamics," Tribology Letters, vol.16, no. 1-2, 2004, pp.81-93.
DOI: 10.1023/b:tril.0000009718.60501.74
Google Scholar
[5]
B. Kwak, A. E. Yagle, J. A. Levitt, "Nonlinear System Identification of HydraulicActuator Friction Dynamics Using a Finite-State Memory Model", Proc. 1999 IEEE Int.Conf. Acoustics, Speech & Signal Processing, Vol. 3, pp.1309-1312, (1999)
DOI: 10.1109/icassp.1999.756220
Google Scholar
[6]
S. Tafazoli, C. W. de Silva, P. D. Lawrence, "Tracking Control of an ElectrohydraulicManipulator in the Presence of Friction", IEEE Transactions on Control SystemsTechnology, Vol. 6, No. 3, pp.401-411, (1998)
DOI: 10.1109/87.668040
Google Scholar
[7]
Jatta, F., Legnani G. and Visioli, A. "Friction Compensation in Hybrid Force/Velocity Control of Industrial Manipulators", IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp.604-613,(2006)
DOI: 10.1109/tie.2006.870682
Google Scholar
[8]
Hutamarn S., Pratumsuwan P.; Po-ngaen W., "Adaptive neuro-fuzzy friction compensator in servo hydraulic system", IEEE Proceedings of Mechatronics and Automation (ICMA), 2011 International Conference on.,7-8 Aug (2011)
DOI: 10.1109/icma.2011.5986307
Google Scholar
[9]
Cao, C. "Fuzzy Compensator for Stick-Slip Friction", Mechatronics, Vol. 3, No. 6, 794.,(1993)
DOI: 10.1016/0957-4158(93)90063-8
Google Scholar
[10]
Gomes, S., Gomes, D. and Diniz, C. (2005) "Neuro-Fuzzy Friction Compensator to Robotic Actuators", IEEE Proceedings of International Conferences on Mechatronics, Taipei, Taiwan, pp.846-851.
DOI: 10.1109/icmech.2005.1529372
Google Scholar
[11]
Habibi, S. and Goldenberg, A. 1999. Design and Analysis of a Symmetrical Linear Actuator for Hydraulic Systems.Transactions of the CSME, Vol. 23, No. 3 & 4, pp.377-397.
Google Scholar
[12]
Habibi, S. and Goldenburg, A. 2000.Design of a New High PerformanceElectrohydraulic Actuator.IEEE/ASME Transactions on Mechatronics, Vol. 5, No.2.
Google Scholar
[13]
J.-S.R. Jang and C.-T.Sun, "Neuro-fuzzy modeling and control," Proceedings of the IEEE, vol. 83, pp.378-406, 1995.
Google Scholar
[14]
Jang, J.S.R. & Sun, C.T. (1993). Functional Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems, IEEE Trans. on Neural Networks, Vol. 4, No.1, pp.156-159.
DOI: 10.1109/72.182710
Google Scholar