[1]
Sankar BV, Taeng JT. Thermal stresses in functionally graded beams. AIAA J 2002; 40: 1228–32.
DOI: 10.2514/3.15185
Google Scholar
[2]
Venkataraman S, Sankar BV. Elasticity solution for stresses in a sandwich beam with functionally graded core. AIAA J 2003; 41: 2501–5.
DOI: 10.2514/2.6853
Google Scholar
[3]
Zhu H, Sankar BV. A combined Fourier series – Galerkin method for the analysis of functionally graded beams. ASME J Appl Mech 2004; 71: 421–3.
DOI: 10.1115/1.1751184
Google Scholar
[4]
Shi ZF, Chen Y. Functionally graded piezoelectric cantilever beam under load. Arch Appl Mech 2004; 74: 237–47.
Google Scholar
[5]
Nirmala K, Upadhyay PC, Prucz J, Loyns D. Thermoelastic stresses in composite beams with functionally grade layer. J Reinf Plast Compos 2005; 24: 1965–77.
DOI: 10.1177/0731684405054375
Google Scholar
[6]
Ching HK, Yen SC. Meslless local Petrov–Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads. Compos Part B – Eng 2005; 36: 223–40.
DOI: 10.1016/j.compositesb.2004.09.007
Google Scholar
[7]
Ching HK, Yen SC. Transient thermoelastic deformations of 2D functionally graded beams under nonuniformly connective heat supply. Compos Struct 2006; 73: 381–93.
DOI: 10.1016/j.compstruct.2005.02.021
Google Scholar
[8]
Lu CF, Chen WQ. Free vibration of orthotropic functionally graded beams with various end conditions. Struct Eng Mech 2005; 13: 1430–7.
Google Scholar
[9]
Wu L, Wang QS, Elishakoff I. Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode. J Sound Vib 2005; 284: 1190–202.
DOI: 10.1016/j.jsv.2004.08.038
Google Scholar
[10]
Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges. Mater Des 2007; 28: 1651–6.
DOI: 10.1016/j.matdes.2006.02.007
Google Scholar
[11]
Yang J, Chen Y. Free vibration and buckling analysis of functionally graded beams with edge cracks. Compos Struct 2008; 83: 48–60.
DOI: 10.1016/j.compstruct.2007.03.006
Google Scholar
[12]
Kapuria S, Bhattacharyya M, Kumar AN. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos Struct 2008; 82: 390–402.
DOI: 10.1016/j.compstruct.2007.01.019
Google Scholar
[13]
Zhong Z, Yu T. Analytical solution of a cantilever functionally graded beam. Compos Sci Technol 2007; 67: 481–8.
Google Scholar
[14]
Ying J, Lü CF, Chen WQ. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos Struct 2008; 84: 209–19.
DOI: 10.1016/j.compstruct.2007.07.004
Google Scholar
[15]
Li XF. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J Sound Vib 2008; 318: 1210–29.
DOI: 10.1016/j.jsv.2008.04.056
Google Scholar
[16]
Ke LL, Yang J, Kitipornchai S., An analytical study on the nonlinear vibration of functionally graded beams, Meccanica (2010) 45: 743–752.
DOI: 10.1007/s11012-009-9276-1
Google Scholar
[17]
Rahmani O, Khalili SMR, Malekzadeh K, Hadavinia H. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Compos Struct 2009. doi: 10. 1016/j. compstruct. 2009. 05. 007.
DOI: 10.1016/j.compstruct.2009.05.007
Google Scholar
[18]
Li Xian-Fang, Wang Bao-Lin, Han Jie-Cai, A higher-order theory for static and dynamic analyses of functionally graded beams, Arch Appl Mech (2010) 80: 1197–1212.
DOI: 10.1007/s00419-010-0435-6
Google Scholar
[19]
Reddy JN. A simple higher-order theory for laminated composite plates. Journal of 16Applied Mechanics 1984; 51(4): 745-752.
DOI: 10.1115/1.3167719
Google Scholar
[20]
Touratier M. An efficient standard plate theory. International Journal of Engineering Science 1991; 29(8): 901-916.
DOI: 10.1016/0020-7225(91)90165-y
Google Scholar
[21]
Soldatos K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica 1992; 94(3): 195-220.
DOI: 10.1007/bf01176650
Google Scholar
[22]
Karama M, Afaq KS, Mistou S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures 2003; 40(6): 1525-1546.
DOI: 10.1016/s0020-7683(02)00647-9
Google Scholar
[23]
Simsek M, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories.
Google Scholar
[24]
Mahi A, Adda Bedia E. A, Tounsi A, Mechab I, An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions, Composite Structures, 92(2010) 1877-1887.
DOI: 10.1016/j.compstruct.2010.01.010
Google Scholar