[1]
O. Rohr, Bismuth–the new ecologically green metal for modern lubricating engineering, Ind. Lubr. Tribol. 54 (2002) 153-164.
DOI: 10.1108/00368790210431709
Google Scholar
[2]
J.P. Heremans, C.M. Thrush, D.T. Morelli, M.C. Wu, Thermoelectric power of bismuth nanocomposites, Phys. Rev. Lett. 88 (2002) 216801–1-216801–4.
DOI: 10.1103/physrevlett.88.216801
Google Scholar
[3]
P. Chiu, I. Shih, A study of the size effect on the temperature-dependent resistivity of bismuth nanowires with rectangular cross-sections, Nanotechnology 15 (2004) 1489-1492.
DOI: 10.1088/0957-4484/15/11/020
Google Scholar
[4]
S. Park, K. Kang, W.Q. Han, T. Vogt, Synthesis and characterization of Bi nanorods and superconducting NiBi particles, J. Alloy Comp. 400 (2005) 88-91.
DOI: 10.1016/j.jallcom.2005.03.063
Google Scholar
[5]
G. Bhimarasetti, M.K. Sunkara, Synthesis of sub-20-nm-sized bismuth 1-D structures using gallium-bismuth systems, J. Phys. Chem. B 109 (2005) 16219-16222.
DOI: 10.1021/jp0529873
Google Scholar
[6]
Y. -N. Choi, M. -Y. Kim, T. -S. Oh, Thermoelectric properties of Bi-Te thin films processed by coevaporation, J. Microelectron. Packag. Soc. 17(4) (2010) 89-94.
Google Scholar
[7]
M.R. Roh, J.Y. Choi, T.S. Oh, Thermoelectric properties of the hot-pressed Bi2(Te0. 9Se0. 1)3 with dispersion of tungsten powders, J. Microelectron. Packag. Soc. 18(4) (2011) 55-61.
Google Scholar
[8]
T. Shono, Y. Matsumyra, T. Hashimoto, K. Hibino, H. Hamaguchi, T. Aoki, Electroorganic chemistry. XXII. Novel anodic cleavage of glycols to carbonyl compounds, J. Am. Chem. Soc. 97 (1975) 2546-2548.
DOI: 10.1021/ja00842a044
Google Scholar
[9]
C. Goia, E. Matijevic, D.V. Goia, Preparation of colloidal bismuth particles in polyols, J. Mater. Res. 20 (2005) 1507-1514.
DOI: 10.1557/jmr.2005.0194
Google Scholar