Impacts of Melt Spinning and Mn Replacement on Electrochemical Hydrogen Storage Performances of Nanocrystalline and Amorphous Mg2Ni-Type Alloys

Article Preview

Abstract:

The Mg2Ni-type alloys with a nanocrystalline and amorphous structure have been confirmed possessing superior electrochemical hydrogen storage kinetics. The melt-spinning technique is used to preparing the nanocrystalline and amorphous Mg2Ni-type alloys with the nominal compositions of Mg20Ni10-xMnx (x = 0, 1, 2, 3, 4). The impacts of the melt spinning and the replacement of Ni by Mn on the structures and the electrochemical performances of the alloys are investigated systematically. The analysis of the structures by XRD and HRTEM reveals that the replacement of Ni by Mn facilitates the glass formation in the Mg2Ni-type alloy, and the amorphization degree of the as-spun alloys increases with the growing of the spinning rate. Furthermore, the replacement renders the formation of secondary phases MnNi and Mg instead of altering the Mg2Ni major phase in the alloys. The measurement of the electrochemical characteristics by an automatic galvanostatic system indicates that the discharge capacity and cycle stability of the alloys dramatically grow with the rising of the spinning rate and the amount of Mn replacement, with which the high rate discharge ability (HRD) of the alloys first augments and then falls.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chandra, A. Sharma, R. Chellappa, W.N. Cathey, F.E. Lynch, R.C. Bowman Jr., J.R. Wermer S.N. Paglieri, Hydriding and structural characteristics of thermally cycled and cold-worked V–0.5 at.%C alloy, J. Alloys Compd. 452 (2008) 312-324.

DOI: 10.1016/j.jallcom.2006.11.078

Google Scholar

[2] D. Guzmán, S. Ordoñez, D. Serafini, P. Rojas, O. Bustos, Effect of the milling energy on the production and thermal stability of amorphous Mg50Ni50, J. Alloys Compd. 471 (2009) 435-441.

DOI: 10.1016/j.jallcom.2008.03.130

Google Scholar

[3] M.Y. Song, S.N. Kwon, J.S. Bae, S.H. Hong, Hydrogen-storage properties of Mg-23.5Ni-(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy 33 (2008) 1711-1718.

DOI: 10.1016/j.ijhydene.2008.01.006

Google Scholar

[4] L.J. Huang, G.Y. Liang, Z.B. Sun, D.C. Wu, Electrode properties of melt-spun Mg-Ni-Nd amorphous alloys, J. Power Sources 160 (2006) 684-687.

DOI: 10.1016/j.jpowsour.2005.12.072

Google Scholar

[5] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[6] S.I. Yamaura, H.Y. Kim, H. Kimura, A. Inoue, Y. Arata, Thermal stabilities and discharge capacities of melt-spun Mg-Ni-based amorphous alloys, J. Alloys Compd. 339 (2002) 230-235.

DOI: 10.1016/s0925-8388(01)01998-3

Google Scholar

[7] Y.H. Zhang, B.W. Li, H.P. Ren, Z.G. Pang, S.H. Guo, X.L. Wang, An electrochemical investigation of melt-spun nanocrystalline and amorphous Mg2Ni-type electrode alloys, J. Alloys Compd. 477 (2009) 759-763.

DOI: 10.1016/j.jallcom.2008.10.098

Google Scholar

[8] A. Gasiorowski , W. Iwasieczko , D. Skoryna, H. Drulis , M. Jurczyk , Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M = Mn, Al), J. Alloys Compd. 364 (2004) 283-288.

DOI: 10.1016/s0925-8388(03)00544-9

Google Scholar

[9] Y. Wu, W. Hana, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd. 466 (2008) 176-181.

DOI: 10.1016/j.jallcom.2007.11.128

Google Scholar