[1]
J. Li. Hilbert's 16th Problem and Bifurcations of Planar Polynomial Vector Fields. International Journal of Bifurcation and Chaos. 13 (2002), pp.47-106.
DOI: 10.1142/s0218127403006352
Google Scholar
[2]
J. Li, Y. Tian, W. Zhang and S. F. Miao. Bifurcation of Multiple Limit Cycles for a Rotor-Active Magnetic Bearings System with Time-Varying Stiffness. International Journal of Bifurcation and Chaos. 18 (2008), pp.755-778.
DOI: 10.1142/s021812740802063x
Google Scholar
[3]
B. Mehri, N. Mahdavi-Amiri. Periodic Solutions of Certain Three Dimensional Autonomous Systems. J. Sci. I. R. Iran, 10(1999), pp.117-120.
Google Scholar
[4]
M. Bayat, B. Mehri. A necessary Condition for the Existence of Periodic Solutions of Certain Three Dimensional Autonomous Systems. Applied Mathematics Letters. 22 (2009), pp.1292-1296.
DOI: 10.1016/j.aml.2009.01.045
Google Scholar
[5]
K.L. Wu and Y.L. Zhao. On the Number of Zeros of Abelian Integral for a Cubic Isochronous Center. International Journal of Bifurcation and Chaos. 1 (2012), pp.1-9.
DOI: 10.1142/s0218127412500162
Google Scholar
[6]
J. Li, Y. Tian and W. Zhang. Investigation of the Relation between Singular Points and the Number of Limit Cycles for a Rotor-AMB System. Chaos, Solitons and Fractals. 39 (2009), pp.1627-1640.
DOI: 10.1016/j.chaos.2007.06.044
Google Scholar
[7]
M. Han, J. Li. Lower Bounds for the Hilbert Number of Polynomial Systems. Journal of Differential Equations. 252 (2012), pp.3278-3304.
DOI: 10.1016/j.jde.2011.11.024
Google Scholar
[8]
E. Perdios, C. G. Zagouras, O. Ragos. Three-dimensional Bifurcations of Periodic Solutions Around the Triangular Equilibrium Points of the Restricted Three-body Problem. Celestial Mechanics & Dynamical Astronony. 51 (1991), pp.349-362.
DOI: 10.1007/bf00052927
Google Scholar
[9]
Kenneth and R. Meyer. Continuation of Periodic Solutions in Three Dimensions. Physica D. 112 (1998), pp.310-318.
DOI: 10.1016/s0167-2789(97)00219-4
Google Scholar