[1]
Campbell G S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117(6): 311-314.
DOI: 10.1097/00010694-197406000-00001
Google Scholar
[2]
Lei Z D, Yang S X, Xie S C. 1988. Soil water dynamics. (in Chinese). Beijing: Tsinghua University press. 25-124.
Google Scholar
[3]
Lei Z D, Hu H P, Yang S X. 1999 A review of soil water research. Advances in Water Science. (in Chinese). 3 (10): 311-318.
Google Scholar
[4]
Song X.Y., Li Y.J., Jiang J., Ma Y.X. 2008. Progress and perspective of spatial variability study on unsaturated soil water movement parameters. Advances in Earth Science. (in Chinese) 23(6): 613-618.
Google Scholar
[5]
Liao K.H., Xu S.H., Wu J.C., JI S.H. and Lin Q. 2011. Assessing soil water retention characteristics and their spatial variability using pedotransfer functions. Pedosphere 21(4): 413-422.
DOI: 10.1016/s1002-0160(11)60143-4
Google Scholar
[6]
Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research. 12(3): 513-522.
DOI: 10.1029/wr012i003p00513
Google Scholar
[7]
Tyler SW, Wheatcraft S.W. 1989. Application of fractal mathematics to soil water retention estimation. Soil Science Society of America Journal. 53: 987-996.
DOI: 10.2136/sssaj1989.03615995005300040001x
Google Scholar
[8]
Tyler S W,Wheatcraft S.W. 1990. Fractal process in soil water retention. Water Resources Research. 26: 1047-1056.
DOI: 10.1029/wr026i005p01047
Google Scholar
[9]
Kravchenko A, Zhang R. 1998. Estimating the soil water retention from particle-size distribution: a fractal approach. Soil Science. 163(3): 171-179.
DOI: 10.1097/00010694-199803000-00001
Google Scholar
[10]
Arya L M, Lei F J, Van Genuchten M T. 1999. Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Soc Am J. 63: 510-519.
DOI: 10.2136/sssaj1999.03615995006300030013x
Google Scholar
[11]
Song Y., Hao L. T. 2012. Study of soil-water characteristic curve using microscopic spherical particle model. Pedosphere. 22(1): 103-111.
DOI: 10.1016/s1002-0160(11)60196-3
Google Scholar
[12]
Huang G.H., Zhang R.D. and Huang Q.Z. 2006. Modeling soil water retention curve with a fractal method. Pedosphere. 16(2): 137-146.
DOI: 10.1016/s1002-0160(06)60036-2
Google Scholar
[13]
Wosten J H M, Van Genuchten M T. 1988. Using texture and other properties to predict the unsaturated soil hydraulic functions. Soil Soc Am J. 52: 1762-1770.
DOI: 10.2136/sssaj1988.03615995005200060045x
Google Scholar
[14]
Filogueira R R. 1999. Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling. Soil Science. 164(4): 217-223.
DOI: 10.1097/00010694-199904000-00001
Google Scholar
[15]
Gomendy V. 1999. Silty topsoil structure and its dynamics: the fractal approach. Geoderma. 88: 165-189.
DOI: 10.1016/s0016-7061(98)00103-7
Google Scholar
[16]
Jia H W. 2004. Experimental study on parameter distributions of soil water movement in Shiyang River basin. MA.D. Dissertation (In Chinese). Yangling: Northwest Sci-Tech University of Agriculture and Forestry.
Google Scholar
[17]
Jia H W, Kang S Z, Zhang F C. 2006. One-parameter model of soil hydraulics parameters. Journal of Hydraulic Engineering. (In Chinese). 37(3): 272-277.
Google Scholar
[18]
Lei F J, Russell W B, Lesch S M. 1997. Closed-form expressions for water retention and conductivity data. Ground Water. 35 (5): 848-858.
DOI: 10.1111/j.1745-6584.1997.tb00153.x
Google Scholar
[19]
Weindorf D. C. and Zhu Y. 2010. Spatial variability ofsoil properties at capulin volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere 20(2): 185-197.
DOI: 10.1016/s1002-0160(10)60006-9
Google Scholar
[20]
Han X.W., Shao M.A. and HORTON R. 2010. Estimating van Genuchten model parameters of undisturbed soils using an integral method. Pedosphere 20(1): 55-62.
DOI: 10.1016/s1002-0160(09)60282-4
Google Scholar