Rapid In Vitro Propagation of Bioenergy Crop Miscanthus Sacchariflorus

Article Preview

Abstract:

Miscanthus sacchariflorus is an important perennial bioenergy feedstock, but no information is available regarding plant rapid propagation from in vitro seed grown plantlets. The present study investigates the effects of the types and combination of plant growth regulators on tissue culture system of M. sacchariflorus. Shoot apices from in vitro germinated seedling explants were tested for adventitious shoot proliferation. The highest level of proliferation (proliferation coefficient 11.66) was obtained when shoot apices were cultured on Murashige and Skoog (MS) medium supplemented with 0.5 mg L−1 6-benzyladenine (BA), 0.05 mg L−1 α–naphthalene acetic acid (NAA), 3% sucrose, and 0.8% agar. The highest root number (13.33) and root length (9.67 cm) were obtained when adventitious shoots were cultured on half-strength MS medium supplemented with 0.4 mg L−1 NAA, 3% sucrose, and 0.8% agar. The efficient plant regeneration system developed here will be helpful for rapid propagation and further genetic improvement in M. sacchariflorus.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-186

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Clifton-Brown, P.F. Stampfl, and M.B. Jones: Global Change Biol. Vol. 10(2004), pp.509-518.

Google Scholar

[2] A. Hastings, J.C. Clifton-Brown, M. Wattenbach, P. Stampfl, C.P. Mitchell, and P. Smith: Agron. Sustain. Dev. Vol. 28(2008), pp.465-472.

DOI: 10.1051/agro:2008030

Google Scholar

[3] L. Scally, T. Hodkinson, and M.B. Jones, in: Miscanthus, for energy and fibre edited by M.B. Jones and M. Walsh,. James & James Science Publishers Ltd, London, UK(2001), pp.1-9.

Google Scholar

[4] P. Visser, and V. Pignatelli, in: Miscanthus, for energy and fibre edited by M.B. Jones and M. Walsh,. James & James Science Publishers Ltd, London, UK(2001) pp.109-154.

Google Scholar

[5] K. Glowacka, S. Jezowski, and Z. Kaczmarek: Plant Cell Tiss. Org. Vol. 102(2010), pp.79-86.

Google Scholar

[6] S. Dutta Gupta, and B. V. Conger: In Vitro Cell. Dev. -Pl. Vol. 34(1998), pp.196-202.

Google Scholar

[7] V.K. Sharma, R. Hansch, R.R. Mendel, and J. Schulze: Plant Cell Rep. Vol. 23(2004), pp.9-16.

Google Scholar

[8] R. Medina, M. Faloci, M. A. Marassi, and L.A. Mroginski: Biocell Vol. 28(2004), pp.13-20.

DOI: 10.32604/biocell.2004.28.013

Google Scholar

[9] P. Baskaran, and N. Jayabalan: J. Agric. Techn. Vol. 7(2005), pp.345-361.

Google Scholar

[10] M. Thiruvengadam, K.T. Rekha, and I. M. Chung: Philipp. Agric. Sci. Vol. 94(2011), pp.7-13.

Google Scholar

[11] J. M. Nielsen, J. Hansen, and K. Brandt: Plant Cell Tiss. Org. Vol. 41(1995), pp.165-170.

Google Scholar

[12] J. M. Nielsen, K. Brandt, and J. Hansen: Plant Cell Tiss. Org. Vol. 35(1993), pp.173-179.

Google Scholar

[13] Q.X. Zhang, Y. Sun, H.K. Hu, B. Chen, C.T. Hong, H.P. Guo, Y.H. Pan, and B.S. Zheng: In Vitro Cell. Dev. -Pl. Vol. 77(2011), pp.197-207.

Google Scholar

[14] P. Barcelo, P. A. Lazzeri, A. Martin, and H. Lorz: J. Plant Physiol. Vol. 139(1992), pp.448-454.

Google Scholar

[15] P. D. Denchev, and B. V. Conger: Plant Cell Tiss. Org. Vol. 40(1995), pp.43-48.

Google Scholar

[16] W.J. Zhou, K. Yoneyama, Y. Takeuchi, S. Iso, S. Rungmekarat, S.H. Chae, D. Sato, and D.M. Joel: J. Exp. Bot. Vol. 55398(2004), pp.899-907.

Google Scholar

[17] K. Chengalrayan, A. Abouzid, and M. Gallo-Meacher: In Vitro Cell. Dev. -Pl. Vol. 41(2005), pp.477-482.

DOI: 10.1079/ivp2005655

Google Scholar

[18] H. Salehi, and M. Khosh-Khui: In Vitro Cell. Dev. -Pl. Vol. 41(2005), pp.157-161.

Google Scholar

[19] Z. Heng, W. Wenling, and S. Mariam: J. Plant Physiol. Vol. 153(1998), pp.719-726.

Google Scholar

[20] Y. E. Choi, D.C. Yang, E.S. Yoon, and K.T. Choi: Plant Cell Reprod. Vol. 17(1998), pp.731-736.

Google Scholar