Two-Dimensional Modelling and Simulation of Crystalline Silicon n+pp+ Solar Cell

Article Preview

Abstract:

In this work, we present the simulation results of the technological parameters and the electrical characteristics of a crystalline silicon n+pp+ solar cell, using two-dimension (2D) software, namely TCAD Silvaco (Technology Computer Aided Design). TCAD Silvaco Athena is used to simulate various stages of the technology manufacturing, while TCAD Silvaco Atlas is used for the simulation of the electrical characteristics and the spectral response of the solar cell. The J-V characteristics and the external quantum efficiency (EQE) are simulated under AM 1.5 illumination. The conversion efficiency(η)of 16.06% is reached and the other characteristic parameters are simulated: the open circuit voltage (Voc) is of 0.63 V, the short circuit current density (Jsc) equals 30.54 mA/cm² and the form factor (FF) is of 0.83 for the n+pp+ solar cell with a silicon nitride antireflection layer (Si3N4). In order to highlight the importance of the back surface field (BSF), a comparison between two cells, one without BSF (structure n+p), the other with one BSF (structure n+pp+), was made. By creating a BSF on the rear face of the cell the short circuit current density increases from 28.55 to 30.54 mA/cm2, the open circuit voltage from 0.6 to 0.63 V and the conversion efficiency from 14.19 to 16.06%. A clear improvement of the spectral response is obtained in wavelengths ranging from 0.65 to 1.1 µm for the solar cell with BSF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-162

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Fischer and W. Pschunder: Proc. 10th IEEE Photovoltaic Specialist Conf. (USA: IEEE) (1973).

Google Scholar

[2] J. Knobloch, S.W. Glunz, V. Henninger, W. Warta, W. Wettling, F. Schomann, W. Schmidt, A. Endrös and K.A. Münzer: Proc. 13th European Photovoltaic Solar Energy Conf. (France: Stephens H S & Associates, Bedford, UK) (1995).

Google Scholar

[3] S.W. Glunz: Solar Energy Materials and Solar Cells Vol. 90 (2006), p.3276.

Google Scholar

[4] ATHENA User's Manual (SILVACO International, 2012).

Google Scholar

[5] ATLAS User's Manual: Device Simulation Software (SILVACO International, 2012).

Google Scholar

[6] F.C. Marques, J. Urdanivia and I. Chambouleyron: Solar Energy Materials and Solar Cells Vol. 52 (1998), p.285.

Google Scholar

[7] K.A. Münzer, K.T. Holdermann, R.E. Schlosser and S. Sterk: IEEE Trans. Electron Devices Vol. 46 (1999), p. (2055).

DOI: 10.1109/16.791996

Google Scholar

[8] S. Bowden, F. Duerinckx, J. Szlufcik and J. Nijs: Proceedings of the 16th PVSEC (2000).

Google Scholar

[9] A. Kaminski, B. Vandelle, A. Fave, J.P. Boyeaux, Nam. Le Quan, R. Monna, D. Sarti and A. Laugier: Solar Energy Materials and Solar Cells Vol. 72 ( 2002), p.373.

DOI: 10.1016/s0927-0248(01)00185-4

Google Scholar

[10] W. Metzger: Solar Energy Materials and Solar Cells Vol. 92 ( 2008), p.1123.

Google Scholar

[11] R. K. Ahrenkiel: Solar Energy Materials and Solar Cells Vol. 76 ( 2003), p.243.

Google Scholar

[12] J. Pla, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte and F. Rubinelli: Thin Solid Films Vol. 425 (2003), p.185.

DOI: 10.1016/s0040-6090(02)01143-4

Google Scholar

[13] L. Janßen, H. Windgassen, D. L. Bätzner, B. Bitnar and H. Neuhaus: Solar Energy Materials and Solar Cells Vol. 93 (2009), p.1435.

DOI: 10.1016/j.solmat.2009.03.015

Google Scholar

[14] A. Cuevas A and D. Russel: Prog. Photovoltaics Res. Appl. Vol. 8 (2000), p.603.

Google Scholar

[15] J. R. Hauser and P. M. Dunbar: IEEE Trans. Electron Dev. Vol. 24 (1977), p.305.

Google Scholar

[16] J. G. Fossum: IEEE Trans. Electron Dev. Vol. 24 (1977), p.322.

Google Scholar