[1]
ZHANG Yiyang, LU Jiping, MENG Yangyang, YAN Huan, LI Hui. Wind Power Short-term Forecasting Based on Empirical Mode Decomposition and Chaotic Phase Space Reconstruction[J]. Automation of Electric Power Systems, 2012, 36(5): 24-28.
Google Scholar
[2]
C. Ronan, B. Samy. Support Vector Machines for large-scale regression problems[J]. IEEE Trans. Neural Networks, 2007, 10(5): 1032~1037.
Google Scholar
[3]
A. Escobet, A. Nebot and F. E. Cellier . Visual-FIR: A tool for model identification and prediction of dynamical complex systems[J]. Simulation Modelling Practice and Theory, 2008, 16(1): 76~92.
DOI: 10.1016/j.simpat.2007.10.006
Google Scholar
[4]
Hu Tiesong, Yuan Peng, Din Jing. 1995. Applications of Artificial Neural network to hydrology and water resources. Advances in Water Science, 6(1): 76-82.
Google Scholar
[5]
Packard N. H., Crutchfield J. P, F, Farmer J. D, and Shaw R. S. Geometry from a time series[J]. Phys Rev Lett, 1980, 45: 712-716.
DOI: 10.1103/physrevlett.45.712
Google Scholar
[6]
Takens F. Detecting strange attractors in turbulence[J]. Lect Notes in Math., 1981, 898: 366-381.
Google Scholar
[7]
Grassberger P., Pocaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9: 189-208.
DOI: 10.1016/0167-2789(83)90298-1
Google Scholar
[8]
Grassberger P., Pocaccia I. Measuring the strangeness of strange attractors. Physica D, 1983, 9: 189-208.
DOI: 10.1016/0167-2789(83)90298-1
Google Scholar
[9]
ZHAO Yonglong, DING Jing, DENG Yuren. 1998. Application of chaotic analysis in hydrologic prediction. Advances in Water Science, 9(2): 181-186.
Google Scholar
[10]
H.S. Kim, R. Eykholt, J.D. Salas. Nonlinear dynamics, delay times, and embedding windows[J]. Phys. D. 1999: 127: 48-60.
DOI: 10.1016/s0167-2789(98)00240-1
Google Scholar
[11]
ZHANG Xuegong. 2000. Introduction to statistical learning theory and support vector machines[J]. ACTA AUTOMATICA SINICA, 26(1): 32-42.
Google Scholar
[12]
YU Hui. Statistical Learning Theory & Support Vector Machince Method[J]. Journal of Hubei University of Education, 2009, 26(2): 14-18.
Google Scholar
[13]
Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, (1995).
Google Scholar
[14]
ZHANG Guoyun, PENG Shiyu. Prediction of chaotic time series using least square support vector machines[J]. Journal of Hunan Institute of Science and Technology(Natural Sciences, 2007, 19(3): 26-30.
Google Scholar
[15]
GAO Wei, WANG Ning. Prediction of Shallow-water Reverberation Time Series Using Support Vector Machine[J]. Computer Engineering, 2008, 34(6): 25-27.
Google Scholar