[1]
G. E. Hinton. Connectionist learning procedure. Artificial Interlligence,40:185–234, 1989.
Google Scholar
[2]
p. M. Williams. Bayesian regularization and pruning using a laplace prior.Neural Computation, 7:117–143, 1995.
DOI: 10.1162/neco.1995.7.1.117
Google Scholar
[3]
A. Weigend, D. Rumelhart, and B. A. Humberman. Generalization byweight-elimination applied to currency exchange rate prediction. In Proc.Int. Joint Conf. Neural Networks, pages 2374–2379, Singapore, 1991.
DOI: 10.1109/ijcnn.1991.170743
Google Scholar
[4]
C. M . Bishop. Curvature-driven smoothing: A learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 4(5):882–884, 1993.
DOI: 10.1109/72.248466
Google Scholar
[5]
S. H. J. van Vuuren. Neural network correlates with generalization. Master's thesis, University of Pretoria.
Google Scholar
[6]
J. E. Moody and T. S. R¨ognvaldsson. Smoothing regularizers for projective basis function networks. Advanceds in Neural Information Processing Systems, 9:585–591, 1997.
Google Scholar
[7]
P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized crossvalidation. Numer. Math., 31:377–403, 1979.
DOI: 10.1007/bf01404567
Google Scholar
[8]
G. Golub, H. Heath, and G.Wahba. Generalized cross validation as a method for choosing a good ridge parameter. Technometrics, 21:215–224, 1979.
DOI: 10.1080/00401706.1979.10489751
Google Scholar
[9]
H. Akaike. Statistical predictor identification. Ann. Inst. Statist. Math., 22:203–217, 1970.
Google Scholar
[10]
J. E. Moody. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 847–854. Morgan Kaufmann Publishers, San Mateo, CA, 1992.
Google Scholar
[11]
C. T. Leung and T.W. S. Chow. Adaptive regularization parameter selection method for enhancing generalization capability of neural networks. Artificial Intelligence, 107:347–356, 1999.
DOI: 10.1016/s0004-3702(98)00115-5
Google Scholar