[1]
S. P. Wu and S. Boyd: FIR filter design via semidefinite programming and spectral factorization. in: Proc. 35th Conf. Decision and Control}, Kobe, Japan (1996).
DOI: 10.1109/cdc.1996.574313
Google Scholar
[2]
W. S. Lu: A unified approach for the design of 2-D digital filters via semidefinite programming. IEEE Transaction on Circuits and Systems-I: Fundamental Theory and Applications Vol.49 (2002), pp.814-826.
DOI: 10.1109/tcsi.2002.1010036
Google Scholar
[3]
W. S. Lu: Design of FIR Filters with discrete coefficients: A semidefinite programming relaxation approach, in: Vol. II of Proc. IEEE Int. Symp. Circuits Syst. (2001).
DOI: 10.1109/iscas.2001.921066
Google Scholar
[4]
W.-S. Lu: Design of FIR digital filters with discrete coefficients via convex relaxation. in: Proc. ISCAS 2005, Kobe (2005).
DOI: 10.1109/iscas.2005.1464966
Google Scholar
[5]
W.-S. Lu, Design of FIR digital filters with discrete coefficients via sphere relaxation. In: SCAS 2006, Kos, Greece (2006).
DOI: 10.1109/iscas.2006.1693133
Google Scholar
[6]
Rika Ita, T. Fujie, K. Suyama and R. Hirabayashi: Design methods of FIR filters with signed power of two coefficients using a new linear programming relaxation with triangle inequalities. International Journal of Innovative Computing, Information and Control Vol. 2 (2006), pp.441-448.
DOI: 10.1109/iscas.2002.1009965
Google Scholar
[7]
C. Helmberg: Semidefinite Programming for Combinatorial Optimization ( Konrad-Zuse- Zentrum fur informationstechnik Germany 2000).
Google Scholar
[8]
M.Peinadoo and S.Homer: Design and performance of parallel and distributed approximation algorithms for max-cut. Journal of Parallel and Distributed Computing Vol. 9(1998), pp.141-160.
Google Scholar
[9]
S. Burer and R.D.C. Monteriro: A projected gradient algorithm for solving the max-cut relaxation. Optimization methods and Software Vol.15 (2001), pp.175-200.
DOI: 10.1080/10556780108805818
Google Scholar
[10]
S. Burer, R.D.C. Monteiro and Y. Zhang: Rank-two relaxation heuristics for MAX-CUT and other binary quadratic programs. SIAM J. on Optimization Vol. 12 (2001), pp.503-521.
DOI: 10.1137/s1052623400382467
Google Scholar
[11]
S. Burer, R.D.C. Monteiro, and Y. Zhang: Maximum stable set formulations and heuristics based on continuous optimization. Math. Program. Vol. 94A (2002), pp.137-166.
DOI: 10.1007/s10107-002-0356-4
Google Scholar
[12]
H. Liu, X. Wang and S. Liu: Feasible direction algorithm for solving SDP relaxation of the quadratic {-1,1} programming. Optimization Methods and Software Vol. 19 (2004), pp.125-136.
DOI: 10.1080/10556780410001647203
Google Scholar
[13]
M. X. Goeman and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiabily problem using semidefinite programming. Journal of ACM Vol. 42(1995), pp.1115-1145.
DOI: 10.1145/227683.227684
Google Scholar
[14]
Y. X. Yuan, W. Y. Sun: The Optimal theories and methods (Scientific publishing company, Beijing, 1995).
Google Scholar
[15]
J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software Vol. 11-12(1999), pp.625-653.
DOI: 10.1080/10556789908805766
Google Scholar