[1]
Giacinto Gelli, Giovanni Poggi. Compression of Multispectral Images by Spectral Classification and Transform Coding. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, Vo1.8(No.4):476-489
DOI: 10.1109/83.753736
Google Scholar
[2]
Chui C.K.and WangJ.Z.A cardinal splnie aPProach to wavelets.Pore.Amer.Maht.Coc., 1991, 11(3):785, 794.
Google Scholar
[3]
Wickerhauser M V .AdaPted wavelet analysis from theory to software.IEEE Perss, The Institute of Electrical and Electronics Engineers, Inc.New York, 1994.
Google Scholar
[4]
Coifman R.and Wickerhauser M.EntroPy based algorithms for best basis selection.IEEE Trans.On IT, 1992,38(2):715一717.
DOI: 10.1109/18.119732
Google Scholar
[5]
Goswami JC, Chna AK,Chui CK.On solving fisrt一kind integral equations using wavelets On a bounded interval. IEEE Trans.0n AP,1995, 43(6):616-620.
DOI: 10.1109/8.387178
Google Scholar
[6]
Delyon b, Judisky A, Benveniste A.Accuracy analysis for wavelet approximations.IEEE Trans.On Neural Networks, 1995, 6(2):330-344.
DOI: 10.1109/72.363469
Google Scholar
[7]
David G V . A wavelet-based analysis of fractal image compression.IEEE Trans.On Image Processing, 1998, 7(2):140-153.
Google Scholar
[8]
Ameodo A, Bacry, Muzy J F.Solving the inverse fractal Problem from wavelet analysis. Euor-physics Letters,1995, 25(7):486-495.
DOI: 10.1209/0295-5075/25/7/001
Google Scholar
[9]
Struzil Z R, The wavelet transform ih the solution to the inverse fractal Problem.Fractals, 1995, 3(2):330-348.
Google Scholar
[10]
Arto Kaarna, Pavel Zemcik, Heikki Kalviainen, Jussi Parkkinen. Compression of Multispectral. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, Vol. 38(No.2):1073-1082
DOI: 10.1109/36.841986
Google Scholar