Ag Doped Co3O4 Nanowire Arrays as an Electrode Material for Electrochemical Capacitors

Article Preview

Abstract:

Co3O4 nanowire arrays freely standing on nickel foam are prepared via a template-free growth method,and it is doped by Ag via electrodeposition method (denoted as NWA-Ag/Co3O4,NWA represents Nanowire Arrays). The morphology of NWA-Ag/Co3O4 is examined by scanning electron microscopy. The phase structure of the NWA-Ag/Co3O4 electrode is characterized by X-ray diffraction spectroscopy. The supercapacitance behavior of the NWA-Ag/Co3O4 electrodes is investigated by cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy. The results show that the nanowire arrays densely cover the nickel foam substrate and have diameters around 250 nm. The NWA-Ag/Co3O4 electrodes exhibit a specific capacitance of 1009 F g−1 at a current density of 5 mA cm-2 in 6.0 mol dm-3 KOH electrolyte. The capacitance loss is less than 6.5% after 500 charge/discharge cycles at 10 mA cm-2 and with columbic efficiency higher than 97.5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-163

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Qing X. X.,Liu S. Q.,Huang K. L.,et al.,Fang D.,Liang X. X.,Electrochim. Acta,Vol. 56 (2011), P.4985

Google Scholar

[2] Li Y. H., Huang K. L.,Yao Z. F., et al., Electrochim. Acta,Vol. 56(2011), P. 2140

Google Scholar

[3] Ahn H. J., Kim, W. B., Seong, T. Y., Electrochem. Commun., Vol. 10(2008), P. 1284

Google Scholar

[4] Gao Y. Y., Chen S. L., Cao D. X., et al., J. Power Sources, Vol. 195(2010), P. 1757

Google Scholar

[5] Zhang Y., Feng H., Wu X. B., et al., Int. J. Hydrogen Energy, Vol. 34(2009), P. 4889

Google Scholar

[6] Burke A., Electrochim. Acta, Vol.53(2007), P. 1083

Google Scholar

[7] Asano Y., Komatsu T., Murashiro K., et al., J. Power Sources, Vol. 196(2011), P. 5215

Google Scholar

[8] Rakhi R.B., Alshareef H. N., J. Power Sources, Vol. 196(2011), P. 8858

Google Scholar

[9] Dubal D. P., Fulari V. J., Lokhande, C. D., Micropor. Mesopor. Mater., Vol. 151(2012), P. 511

Google Scholar

[10] Wang G. L., Huang J. C., Chen S. L., et al., Power Sources, Vol. 196(2011), P. 5756

Google Scholar

[11] Hu C. C., Chang K. H., Lin M. C., et al., Nano Lett., Vol. 6(2006), P. 2690

Google Scholar

[12] Wang J. G., Yang Y., Huang Z. H., et al., J. Power Sources, Vol. 204(2012), P. 236

Google Scholar

[13] Zhou W. J., Xu M. W., Zhao D. D., et al., Micropor. Mesopor. Mater., Vol.117(2009), P. 55

Google Scholar

[14] Deng M. J., Huang F. L., Sun I. W., et al., Nanotechnology, Vol. 20(2009), P. 175602

Google Scholar

[15] Zhou W. J., Zhang J., Xue T., et al., J. Mater. Chem., Vol. 18(2008), P. 905

Google Scholar

[16] Hosono E., Fujihara S., Honma I., et al., J. Power Sources, Vol. 158(2006), P. 779

Google Scholar

[17] Tao F., Zhao Y. Q., Zhang G. Q., et al., Electrochem. Commun., Vol. 9(2007), P. 1282

Google Scholar

[18] Yan J., Wei T., Qiao W. M., et al., Electrochim. Acta, Vol. 55(2010), P.6973

Google Scholar

[19] Kandalkar S.G., Lee H. M., Chae H., et al., Mater. Res. Bull., Vol. 46(2011), P. 48

Google Scholar

[20] Srinivasan V., Weidner J. W., J. Power Sources, Vol. 108(2002), P.15

Google Scholar

[21] Wang Y. H., Zhitomirsky I., Mater. Lett., Vol. 65(2011), P. 1759

Google Scholar

[22] Ahn H. J., Sung Y. E., Kim W. B., et al., Electrochem. Solid State Lett., Vol. 11(2008), A112

Google Scholar