[1]
Aranda S, Klunker F, Ziegmann G. Compaction response of fiber reinforcements depending on processing temperature. Proceedings of ICCM17. Edinburgh2009.
Google Scholar
[2]
Hammami A. Effect of reinforcement structure on compaction behavior in the vacuum infusion process. Polym Compos. 2001;22(3):337-48.
DOI: 10.1002/pc.10542
Google Scholar
[3]
Kelly PA, Umer R, Bickerton S. Viscoelastic response of dry and wet fibrous materials during infusion processes. Compos Pt A-Appl Sci Manuf. 2006;37(6):868-73.
DOI: 10.1016/j.compositesa.2005.02.008
Google Scholar
[4]
Robitaille F, Gauvin R. Compaction of textile reinforcements for composites manufacturing. I: Review of experimental results. Polym Compos. 1998;19(2):198-216.
DOI: 10.1002/pc.10091
Google Scholar
[5]
Robitaille F, Gauvin R. Compaction of textile reinforcements for composites manufacturing. II: Compaction and relaxation of dry and H2O-saturated woven reinforcements. Polym Compos. 1998;19(5):543-57.
DOI: 10.1002/pc.10128
Google Scholar
[6]
Robitaille F, Gauvin R. Compaction of textile reinforcements for composites manufacturing. III. Reorganization of the fiber network. Polym Compos. 1999;20(1):48-61.
DOI: 10.1002/pc.10334
Google Scholar
[7]
Batch GL, Cumiskey S, Macosko CW. Compaction of fiber reinforcements. Polym Compos. 2002;23(3):307-18.
DOI: 10.1002/pc.10433
Google Scholar
[8]
Chen BX, Chou TW. Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation. Compos Sci Technol. 1999;59(10):1519-26.
DOI: 10.1016/s0266-3538(99)00002-0
Google Scholar
[9]
Kim YR, McCarthy SP, Fanucci JP. COMPRESSIBILITY AND RELAXATION OF FIBER REINFORCEMENTS DURING COMPOSITE PROCESSING. Polym Compos. 1991;12(1):13-9.
DOI: 10.1002/pc.750120104
Google Scholar
[10]
Kruckenburg T, Parton R. Compaction of dry and lubricated reinforcements. Proceedings FPCM-7. Delaware, 2004.
Google Scholar
[11]
Pearce N, Summerscales J. The compressibility of a reinforcement fabric. Composites Manufacturing. 1995;6(1):15-21.
DOI: 10.1016/0956-7143(95)93709-s
Google Scholar
[12]
Saunders RA, Lekakou C, Bader MG. Compression in the processing of polymer composites 1. A mechanical and microstructural study for different glass fabrics and resins. Compos Sci Technol. 1999;59(7):983-93.
DOI: 10.1016/s0266-3538(98)00137-7
Google Scholar
[13]
Luo YW, Verpoest I. Compressibility and relaxation of a new sandwich textile preform for liquid composite molding. Polym Compos. 1999;20(2):179-91.
DOI: 10.1002/pc.10345
Google Scholar
[14]
Bickerton S, Buntain MJ, Somashekar AA. The viscoelastic compression behavior of liquid composite molding preforms. Compos Pt A-Appl Sci Manuf. 2003;34(5):431-44.
DOI: 10.1016/s1359-835x(03)00088-5
Google Scholar
[15]
Klunker F, Aranda S, Ziegmann G. Permeability and compaction models for non-crimped fabrics to perform 3D simulations of vacuum assisted resin infusion. The 9th International Conference on Flow Processes in Composite Materials. Montreal, Canada 2008.
Google Scholar
[16]
Yang JS, Xiao JY, Zeng JC, Jiang DZ, Peng CY. Compaction Behavior and Part Thickness Variation in Vacuum Infusion Molding Process. Appl Compos Mater. 2012;19(3-4):443-58.
DOI: 10.1007/s10443-011-9217-8
Google Scholar
[17]
Greb C, Schnabel A, Linke M. New technology and process chains for high volume production of textile preforms. 17th SAMPE Germany conference. Aachen2011.
Google Scholar
[18]
Aranda S, Klunker F, Ziegmann G. Influence of the binding system in the compaction behavior of NCF carbon fiber reinforcement. Proceedings of ICCM18. Jeju 2011.
Google Scholar
[19]
Unal R, Dean EB. Taguchi approach to design optimization for quality and cost: an overview. Proceedings of the 13th annual conference of the international society of parametric analysis. Louisiana 1991.
Google Scholar
[20]
Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I. Properties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer. 2005;46(23):9871-80.
DOI: 10.1016/j.polymer.2005.07.082
Google Scholar