Multicomponent Y-M-Al-Co(M=Ce, Nd or Pr) Amorphous Alloys Developed by Equiatomic Substitution

Article Preview

Abstract:

Novel multicomponent amorphous alloys have been manufactured by the method of equiatomic substitution for the Y element in Y56Al24Co20 amorphous alloy. Y56-xMxAl24Co20(M=Ce, Pr or Nd; x= 5, 10, 15 and 20at.%) alloys with a diameter of 2 mm have been prepared by suction casting. The glass-forming ability(GFA) was characterized by differential scanning calorimetry(DSC). The supercooled liquid region ∆Tx(=Tx-Tg ) and parameter γ (=Tx/(Tg+Tl)) increase with the increasing of the addition element content. The effects of equiatomic element on ∆Tx of Y56Al24Co20 alloy arise from the increasing of the electronegativity difference Δx, the atomic size parameter δ and the valence electron difference Δn. The results suggest that the GFA of some alloys might be improved by the addition of other equiatomic elements substitution for the alloy constituent elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-307

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Peker, W.L. Johnson: Appl. Phys. Lett. Vol.63 (1993), P.2342

Google Scholar

[2] A. Inoue, T. Zhang and A. Takeuchi: Appl. Phys. Lett. Vol.71 (1997), P.464

Google Scholar

[3] S. Yi, J.K. Lee, W.T. Kim, et al: J. Non-Cryst. Solids Vol.291(2001) , P.132

Google Scholar

[4] Y.C. Kim, J.C. Lee, P.R. Cha, et al: Mater. Sci. Eng. A Vol. 437(2006), P.248

Google Scholar

[5] B. Gun, K.J. Laws and M. Ferry: J. Non-Cryst. Solids Vol.352(2007) , P.3896

Google Scholar

[6] T. Zhang and A. Inoue: Mater. Trans. JIM Vol.39 (1998), P.1001

Google Scholar

[7] S.W.He,Y.Liu, Z.T.Li, et al: Metall. Mater. Trans. A Vol.39 (2008) , P.1797

Google Scholar

[8] S.W.He,Y.Liu, B.Y. Huang, et al: J. Mater. Process. Technol. Vol.204 (2008), P.179

Google Scholar

[9] Q.G. Meng, J.K. Zhou, H.X. Zheng, et al: Scripta Mater. Vol.54 (2006), P.777

Google Scholar

[10] F. Q. Guo, S. J. Poon and G. J. Shiflet: Appl. Phys. Lett. Vol.83 (2003), P.2575

Google Scholar

[11] A. Inoue: Mater. Sci. Eng. A Vol.226-228(1997), P.357

Google Scholar

[12] W. H. Wang: Prog. Mater Sci. Vol.52(2007), P.540

Google Scholar

[13] B. Cantor, K.B. Kim, P.J. Warren: Mater. Sci. Forum. Vol.386-388 (2002), P.27

Google Scholar

[14] K.B. Kim, P.J. Warren and B. Cantor: Mater. Sci. Eng. A Vol.375-377(2004), P.317

Google Scholar

[15] K.B. Kim, P.J. Warren and B. Cantor: J. Non-Cryst. Solids Vol.317 (2003), P.17

Google Scholar

[16] D. Turnbull: Contemp. Phys. Vol.10(1969), P.473

Google Scholar

[17] Z.P. Lu and C.T. Liu: Acta Mater. Vol.50(2002), P.3501

Google Scholar

[18] J. A. Dean: Lange's handbook of chemistry (McGraw-Hill, New York 1999)

Google Scholar

[19] S. R. Nagel, J. Tauc: Phys. Rev. Lett . Vol.35(1975), P.380

Google Scholar

[20] F. R. Szofran, G. R. Gruzalski, J. W. Weymouth, et al: Phys. Rev. B Vol.14(1976), P.2160

Google Scholar

[21] K.H.J. Buschow, N. M. Beekmans: Phys. Rev. B Vol.19(1979), P.3843

Google Scholar

[22] S. S. Fang, X. S. Xiao, L. Xia, et al: Intermetallics Vol.12(2004), P.1069

Google Scholar

[23] S.S. Fang, Z.Q. Zhou, J.L. Zhang, et al: J. Alloys Compd. Vol.293-295(1999), P.10

Google Scholar