Microstructure Evolution of Al/Fe Liquid/Solid Interface

Article Preview

Abstract:

The liquid/solid composite technology has wide range of applications in the preparation of Fe-Al composite materials and structures. The diffusion-reaction zone (DRZ) formed in the liquid/solid interface has a great influence on their properties. The Al-Fe diffusion couple was prepared by using the insert technology and treated at 700°C-900°C. The microstructure evolution and growth mechanism of the DRZ in the Al/Fe liquid /solid interface were investigated. The result shows that the microstructure of Al/Fe liquid/solid diffusion couple after heat treatment (HT) is (Al+FeAl3)/FeAl3/Fe2Al5/Fe; Fe2Al5 is the only new phase during the heat preservation process, FeAl3 is formed by desolventizing during the cooling process. The growth of the Fe2Al5 is controlled by the chemical reaction of the Al atoms and Fe atoms before the Fe2Al5 continuous single-phase layer is formed; Once the continuous Fe2Al5 single-phase layer is formed, the growth of the Fe2Al5 mainly depends on the diffusion of Al atoms in the solid phase Fe2Al5 layer, and the reaction occurs in the solid/solid interface of the Fe2Al5 layer and iron. Precipitate is not found in the iron while the needlelike and strip FeAl3 precipitates appear in the aluminum; the density and size of the FeAl3 precipitates decrease gradually from the vicinity of interface to the distant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-421

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bahadur: Mater. Manuf. Process Vol.11(1996), p.225

Google Scholar

[2] Z.W. Chen and M. Z. Jahedi: Mater. Des. Vol. 20(1999), p.303

Google Scholar

[3] A. Shafyei, R. I. L.Guthrie, in: Light Metals, Proceedings of the 125th TMS Annual Meeting, February 4-8, 1996, Anaheim, CA, TMS Publication, 1996, p.1017

Google Scholar

[4] V. I. Dybkov: J. Mater. Sci. Vol. 25(1990), p.3615

Google Scholar

[5] R. Subramaian and J. H. Schneibel: JOM Vol. 49(1997), p.50

Google Scholar

[6] J. Pan, M. Yoshida, G. Sasaki, et al: Scripta Mater. Vol. 43(2000), p.155

Google Scholar

[7] H. Glasbrenner, O. Wedemeyer: J. Nucl. Mater. Vol. 257 (1998), p.274

Google Scholar

[8] N. H. Heo, M. T. Kim, J. H. Shin, et al. : Surf. Coat. Technol. Vol. 124(2000), p.39

Google Scholar

[9] A. B. Smith, A. Kempster, J. Smith: Surf. Coat. Technol. Vol. 120-121(1999), p.112

Google Scholar

[10] L. M. Zhang, B.W liu and D. B. Sun: Int. J. Miner., Metall., and Mater. Vol.18 (2011), p.725

Google Scholar

[11] V. P. Ermakova, O. Y. Sheshukov and L. A. Marshuk: Met. Sci. Heat Treat. Vol. 52(2010), p.349

Google Scholar

[12] A. Bahadur, O. N. Mohanty: Mater. Trans., JIM Vol. 36(1995), p.1170

Google Scholar

[13] G. Eggeler, W. Auer, H. Kaesche: Z. Metallkd. Vol. 77(1986), p.239

Google Scholar

[14] H. T. Wang, C. J. Li and G. C. Ji: J. Therm. Spray Technol. Vol. 21(2012), p.571

Google Scholar

[15] K. Bouché . Etude thermocinétique de la dissolution des métaux solides (fer et nickel) dans l'aluminium liquide, thesis, University of Provence, Marseille, France, 1995.

Google Scholar

[16] Y. Tanaka and M. Kajihara: J. Mater. Sci. Vol. 45(2010), 20, p.5676

Google Scholar

[17] K. Bouché, F. Barbier and A. Coulet: Mate. Sci. Eng. A Vol. 249(1998), p.167

Google Scholar

[18] A. Bouayad, C. Gerometta and A. Belkebir: Mater. Sci. Eng. A Vol.363(2003), p.53

Google Scholar

[19] Metals Handbook, Vol. 63, 10th Edition, ASM International (1992).

Google Scholar

[20] R.W. Richard, R. D. Jones and P. D. Clements: Int. Mat. Rev. Vol. 39(1994), p.191

Google Scholar