Luminescence Properties of Inert Lanthanide Ion Doped Europium Complexes with 2-Pyrazinecarboxylic Acid and Butanedioic Acid

Article Preview

Abstract:

Nine europium complexes with 2-pyrazinecarboxylic acid (Hpyca) and butanedioic acid (HBDA) were synthesized and characterized by elemental, IR, EDTA titration, ICP, and TG-DSC analyses. The results show that the complexes have the compositions of Eu(Pyca)(BDA)•2H2O, Eu0.7La0.3(Pyca)(BDA)•2H2O, Eu0.6La0.4(pyca)(BDA)•3H2O, Eu0.5La0.5(pyca)(BDA)•4H2O, Eu0.7Y0.3(Pyca)(BDA)•3H2O, Eu0.6Y0.4 (Pyca)(BDA)•2H2O, Eu0.5Y0.5(Pyca)(BDA)•3H2O, Eu0.7Gd0.3(Pyca)(BDA)•2H2O and Eu0.5Gd0.5(Pyca)(BDA)•2H2O. IR spectra indicate that lanthanide ions coordinate with the carboxylic oxygen atoms and nitrogen atoms of Hpyca and oxygen atoms of HBDA. Luminescence spectra show that the introduction of La3+, Y3+ or Gd3+ in the complexes does not change the luminescence peak position, but remarkably increases luminescent intensity of the europium complexes. The quantum yields of the complexes doped with inert lanthanide ions (La3+, Y3+ or Gd3+) are higher than that of the undoped europium complex. Furthermore, doping the inert lanthanide ions in right proportion can increase the luminescence lifetimes of complexes. Those complexes are of strong luminescence, low cost and practical value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-59

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Liu, D. Liang and Z. Tong: J. Macromolecules Vol. 35 (2002), p.1487.

Google Scholar

[2] M. Zhang, Y.L. Zhao and Y.F. Zhao: J. Chin. J. Lumin. Vol 29 (2008), p.827.

Google Scholar

[3] C.D. Laura, P. Jorge and F. Oscar: J. Inorg. Chem. Vol. 45 (2006), p.10585.

Google Scholar

[4] C.M. Subal, Z. Ennio and R. Joan: J. Polyhedron. Vol. 25 (2006), p.1779.

Google Scholar

[5] V. Chandrasekhar, V. Baskar, A. Steiner and S. Zacchini. Organometallics Vol. 21 (2002), p.4528.

Google Scholar

[6] K.C. K Swamy, M.A. Said, S. Nagabrahmanandachari, D.M. Poojary and A. Clearfield: J. Chem. Soc. Dalton Trans. (1998), p.1645.

Google Scholar

[7] R.J. Ma, H.B. Chu and Y.L. Zhao: Spectrochim. Acta A Vol. 77 (2010), p.419.

Google Scholar

[8] B. Yan, H.J. Zhang, S.B. Wang and J.Z. Ni: J. Photochem. Photobiol. A Vol. 116 (1998), p.209.

Google Scholar

[9] G.A. Grosby, R.E. Whan and R.M. Alire: J. Chem. Phys. Vol. 34 (1961), p.743.

Google Scholar

[10] Y. Li and Y.L. Zhao: J. Fluoresc. Vol. 19 (2009), p.641.

Google Scholar

[11] X.F. Qiao and B. Yan: New J. Chem. Vol. 35 (2011), p.568.

Google Scholar

[12] M.H.V. Werts, R.T.F. Jukes and J.W. Verhoeven: J. Chem. Phys. Vol. 4 (2002), p.1542.

Google Scholar

[13] B. Yan, Y.L. Sui and J.L. Liu: J. Alloys Compd. Vol. 476 (2009), p.826.

Google Scholar

[14] C.J. Xua, B.G. Li, J.T. Wang and Z.Y. Bu: Spectrochimica Acta Part A 82 (2011) 159.

Google Scholar

[15] W.N. Wu, N. Tang, L. Yan. Spectrochim. Acta A Vol. 71 (2008), p.1461.

Google Scholar