[1]
Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, P. D. Yang, Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties, (2012) Nano Lett., DOI: 10. 1021/ nl3001138.
DOI: 10.1021/nl3001138
Google Scholar
[2]
X. J. Liu, M. Knauer, N. P. Ivleva, R. Niessner, C. Haisch, Synthesis of Core−Shell Surface-Enhanced Raman Tags for Bioimaging, Anal. Chem. 82, (2010) 441-446.
DOI: 10.1021/ac902573p
Google Scholar
[3]
Y. W. Zhao, H. L. Jin, H. Zhou, J. J. Lin, S. Wang, J. C. Wang, Fabrication of Te@Pd Core-shell Hybrids for Efficient C-C Coupling Reactions, J. Phys. Chem. C, (2012) DOI: 10. 1021/jp212197r.
DOI: 10.1021/jp212197r
Google Scholar
[4]
W. B. Li, Y. Y. Guo, P. Zhang, General Strategy to Prepare TiO2-Core Gold-Shell Nanoparticles as SERS-Tags, J. Phys. Chem. C, 114, (2010) 7263-7268.
DOI: 10.1021/jp908160m
Google Scholar
[5]
Jong-Il Park, Jinwoo Cheon, Synthesis of Solid Solution" and "Core-Shell, Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions,J. Am. Chem. Soc., 123, (2001) 5743-5746.
DOI: 10.1021/ja0156340
Google Scholar
[6]
D. B. Shieh, F. Y. Cheng, C. H. Su, C. S. Yeh, M. T. Wu, Y. N. Wu, C. Y. Tsai, C. L. Wu, D. H. Chen, C. H. Chou, Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents, Biomaterials, 26 (2005).
DOI: 10.1016/j.biomaterials.2005.05.020
Google Scholar
[7]
A. E. Prigodich, A. H. Alhasan, C. A. Mirkin, Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles, J. Am. Chem. Soc., 133, (2011) 2120-2123.
DOI: 10.1021/ja110833r
Google Scholar
[8]
R. Massart, Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetic, 17, (1981)1247-1248.
DOI: 10.1109/tmag.1981.1061188
Google Scholar
[9]
M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, H. E. Toma, J. Magn. Magn. Mater., 279, (2004) 210-217.
Google Scholar
[10]
D. G. Duff, A. Baiker, A new hydrosol of gold clusters. 1. Formation and particle size variation Langmuir, 9, (1993) 2301-2309.
DOI: 10.1021/la00033a010
Google Scholar
[11]
S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces, Langmuir, 14, (1998) 5396-5401.
DOI: 10.1021/la980380q
Google Scholar
[12]
H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, Nanorice: A Hybrid Plasmonic Nanostructure, Nano Lett., 6, (2006) 827-832.
DOI: 10.1021/nl060209w
Google Scholar
[13]
D. L. Ma, T. Veres, L. Clime, F. Normandin, J. W. Guan, D. Kingston, B. Simard , Superparamagnetic FexOy@SiO2 Core−Shell Nanostructures: Controlled Synthesis and Magnetic Characterization, J. Phys. Chem. C , 111, (2007) 1999-(2007).
DOI: 10.1021/jp0665067
Google Scholar
[14]
L. Cui, M. Yao, B. Ren, K. S. Zhang, Sensitive and Versatile Detection of the Fouling Process and Fouling Propensity of Proteins on Polyvinylidene Fluoride Membranes via Surface-Enhanced Raman Spectroscopy, Anal, Chem, 83, (2011)1709–1716.
DOI: 10.1021/ac102891g
Google Scholar
[15]
W. Xie. C. Herrmann , K. Kömpe , M. Haase , S. Schlücker . Synthesis of Bifunctional Au/Pt/Au Core/Shell Nanoraspberries for in Situ SERS Monitoring of Platinum-Catalyzed Reactions, J. Am. Chem. Soc., 133, (2011) 19302-19305.
DOI: 10.1021/ja208298q
Google Scholar
[16]
J. F. Li, Z. L. Yang, B. Ren, G. K. Liu, P. P. Fang, Y. X. Jiang,D. Y. Wu, Z. Q. Tian. Surface-Enhanced Raman Spectroscopy Using Gold-Core Platinum-Shell Nanoparticle Film Electrodes: Toward a Versatile Vibrational Strategy for Electrochemical Interfaces, Langmuir, 22, (2006).
DOI: 10.1021/la061366d
Google Scholar
[17]
D. L. A. de Faria, S. Venancio Silva, M. T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectroscopy, J. Raman Spectroscopy, 28, (1997) 873-878.
DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b
Google Scholar
[18]
K. T. Carron, L. G. Hurley, Axial and azimuthal angle determination with surface-enhanced Raman-spectroscopy-thiophenol on copper, silver, and gold metal-surfaces, J. Phy. Chem., 95, (1991) 9979-9984.
DOI: 10.1021/j100177a068
Google Scholar