The Preparation and Characteristic of Superparamagnetic Core/Shell Nanoparticles

Article Preview

Abstract:

Superparamagnetic core/shell nanoparticles have been prepared successfully by the reduction of Au3+ onto the surface of superparamagnetic nanoparticles. The core/shell nanoparticles were characterized by Transmission electron microscopy (TEM), X-ray powder diffraction patterns (XRD), UV–vis spectrophotometer, Vibration Sample Magnetometer(VSM) and micro-confocal Raman system. The results revealed that the prepared core/shell nanoparticles were covered by Au shell. These superparamagnetic nanoparticles can be highly sensitively detected and afford new opportunities for biomedical applications through chemical bonding of bioactive molecules with the Au shell of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-435

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, P. D. Yang, Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties, (2012) Nano Lett., DOI: 10. 1021/ nl3001138.

DOI: 10.1021/nl3001138

Google Scholar

[2] X. J. Liu, M. Knauer, N. P. Ivleva, R. Niessner, C. Haisch, Synthesis of Core−Shell Surface-Enhanced Raman Tags for Bioimaging, Anal. Chem. 82, (2010) 441-446.

DOI: 10.1021/ac902573p

Google Scholar

[3] Y. W. Zhao, H. L. Jin, H. Zhou, J. J. Lin, S. Wang, J. C. Wang, Fabrication of Te@Pd Core-shell Hybrids for Efficient C-C Coupling Reactions, J. Phys. Chem. C, (2012) DOI: 10. 1021/jp212197r.

DOI: 10.1021/jp212197r

Google Scholar

[4] W. B. Li, Y. Y. Guo, P. Zhang, General Strategy to Prepare TiO2-Core Gold-Shell Nanoparticles as SERS-Tags, J. Phys. Chem. C, 114, (2010) 7263-7268.

DOI: 10.1021/jp908160m

Google Scholar

[5] Jong-Il Park, Jinwoo Cheon, Synthesis of Solid Solution" and "Core-Shell, Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions,J. Am. Chem. Soc., 123, (2001) 5743-5746.

DOI: 10.1021/ja0156340

Google Scholar

[6] D. B. Shieh, F. Y. Cheng, C. H. Su, C. S. Yeh, M. T. Wu, Y. N. Wu, C. Y. Tsai, C. L. Wu, D. H. Chen, C. H. Chou, Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents, Biomaterials, 26 (2005).

DOI: 10.1016/j.biomaterials.2005.05.020

Google Scholar

[7] A. E. Prigodich, A. H. Alhasan, C. A. Mirkin, Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles, J. Am. Chem. Soc., 133, (2011) 2120-2123.

DOI: 10.1021/ja110833r

Google Scholar

[8] R. Massart, Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetic, 17, (1981)1247-1248.

DOI: 10.1109/tmag.1981.1061188

Google Scholar

[9] M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, H. E. Toma, J. Magn. Magn. Mater., 279, (2004) 210-217.

Google Scholar

[10] D. G. Duff, A. Baiker, A new hydrosol of gold clusters. 1. Formation and particle size variation Langmuir, 9, (1993) 2301-2309.

DOI: 10.1021/la00033a010

Google Scholar

[11] S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces, Langmuir, 14, (1998) 5396-5401.

DOI: 10.1021/la980380q

Google Scholar

[12] H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, Nanorice: A Hybrid Plasmonic Nanostructure, Nano Lett., 6, (2006) 827-832.

DOI: 10.1021/nl060209w

Google Scholar

[13] D. L. Ma, T. Veres, L. Clime, F. Normandin, J. W. Guan, D. Kingston, B. Simard , Superparamagnetic FexOy@SiO2 Core−Shell Nanostructures: Controlled Synthesis and Magnetic Characterization, J. Phys. Chem. C , 111, (2007) 1999-(2007).

DOI: 10.1021/jp0665067

Google Scholar

[14] L. Cui, M. Yao, B. Ren, K. S. Zhang, Sensitive and Versatile Detection of the Fouling Process and Fouling Propensity of Proteins on Polyvinylidene Fluoride Membranes via Surface-Enhanced Raman Spectroscopy, Anal, Chem, 83, (2011)1709–1716.

DOI: 10.1021/ac102891g

Google Scholar

[15] W. Xie. C. Herrmann , K. Kömpe , M. Haase , S. Schlücker . Synthesis of Bifunctional Au/Pt/Au Core/Shell Nanoraspberries for in Situ SERS Monitoring of Platinum-Catalyzed Reactions, J. Am. Chem. Soc., 133, (2011) 19302-19305.

DOI: 10.1021/ja208298q

Google Scholar

[16] J. F. Li, Z. L. Yang, B. Ren, G. K. Liu, P. P. Fang, Y. X. Jiang,D. Y. Wu, Z. Q. Tian. Surface-Enhanced Raman Spectroscopy Using Gold-Core Platinum-Shell Nanoparticle Film Electrodes: Toward a Versatile Vibrational Strategy for Electrochemical Interfaces, Langmuir, 22, (2006).

DOI: 10.1021/la061366d

Google Scholar

[17] D. L. A. de Faria, S. Venancio Silva, M. T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectroscopy, J. Raman Spectroscopy, 28, (1997) 873-878.

DOI: 10.1002/(sici)1097-4555(199711)28:11<873::aid-jrs177>3.0.co;2-b

Google Scholar

[18] K. T. Carron, L. G. Hurley, Axial and azimuthal angle determination with surface-enhanced Raman-spectroscopy-thiophenol on copper, silver, and gold metal-surfaces, J. Phy. Chem., 95, (1991) 9979-9984.

DOI: 10.1021/j100177a068

Google Scholar