Morphology Control of SAPO-11 and SAPO-47 Crystals in the Presence of Diethylamine

Article Preview

Abstract:

SAPO-11 and SAPO-47 crystals have been synthesized using diethylamine (DEA) as the structure-directing agent (SDA) and their morphology have been controlled successfully by varying aging duration. The single crystals were obtained in a short aging duration while film and island-like crystals were obtained in a long aging duration. The effect of SiO2/Al2O3 ration and content of HF on SAPO-47 crystals have been investigated. High molar ration of SiO2/Al2O3 and high content of HF is tend to synthesize larger crystals of SAPO-47. All the samples were characterized by XRD and SEM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1737-1741

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.S. Cundy and P.A. Cox, Chem. Rev. 103 (2003) 663.

Google Scholar

[2] S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 104 (1982) 1146.

Google Scholar

[3] Z.M. Li, J.P. Zhai, H.J. Liu, I.L. Li, C.T. Chan, P. Sheng, Z.K. Tang, Appl. Phys. Lett. 85 (2004) 1253.

Google Scholar

[4] J.P. Zhai, I.L. Li, S.C. Ruan, Z.K. Tang, Micropor. Mesopor. Mater. 124 (2009) 15.

Google Scholar

[5] H.O. Pastore, S. Coluccia and L. Marchese, Annu. Rev. Mater. Res. 35 (2005) 351.

Google Scholar

[6] P.T. Barger, S.T. Wilson and T.M. Reynolds, US Patent 5912393, (1999).

Google Scholar

[7] S.J. Miller, US Patent 5, 135, (1992).

Google Scholar

[8] S.J. Miller, Micropor. Mater. 2 (1994) 439.

Google Scholar

[9] R.J. Taylor and R.H. Petty, Appl . Catal. A. 119 (1994) 121.

Google Scholar

[10] J.M. Campelo, ,F. Lafont and J. M. Marinas, J. Catal. 156 (1995) 11.

Google Scholar

[11] L. Xu, Z. Liu, P. Tian, Y. Wei, C. Sun, S. Li, Zeolites and mesoporous materials at the dawn of the 21st century, in: Proceedings of the 13th International Zeolite Conference, Session: 05 Synthesis of new materials, Poster: 05-P-17.

DOI: 10.1016/s0167-2991(01)81522-6

Google Scholar

[12] L. Olivier and V. P. Valtchev, Chem. Mater. 16 (2004) 3381.

Google Scholar

[13] F. Hamidi, M. Pamba, A. Bengueddach, F. Di Renzo, F. Fajula, Stud. Surf. Sci. Catal. 135 (2001) 334.

Google Scholar

[14] O. Larlus and V. P. Valtchev, Chem. Mater. 16 (2004) 3381.

Google Scholar

[15] L. Fu, J.P. Zhai, J.M. Hu, I.L. Li, S.C. Ruan, and Z.K. Tang, Micropor. Mesopor. Mater. 137 (2011) 1.

Google Scholar

[16] R. M. Barrer, The Hydrothermal Chemistry of Zeolites; Academic Press: London, 1982; Chapter 4.

Google Scholar

[17] L. Gora, K. Streletzky, R. W. Thompson, G. D. J. Phillies, Zeolites. 18 (1997) 119.

Google Scholar

[18] C.S. Cundy, J.O. Forrest, R.J. Plaisted, Stud. Surf. Sci. Catal. 135 (2001) 143.

Google Scholar

[19] E. Mateo, R. Lahoz, G.F. de la Fuente, A. Paniagua, J. Coronas and J. Santamaría, Chem. Mater. 19 (2007) 594.

DOI: 10.1021/cm062317p

Google Scholar

[20] N. Li, Y.F. Ma, W.B. Kong, N.J. Guan, S.H. Xiang, Micropor. Mesopor. Mater. 115 (2008) 356.

Google Scholar

[21] X.T. Xu, J.P. Zhai, I.L. Li, J.N. Tang, and S.C. Ruan, Micropor. Mesopor. Mater. 148 (2012) 122.

Google Scholar