A Novel Simplified Model Approach for Fiber Modified by 1-D Nano Techniques

Article Preview

Abstract:

A novel combination of optical fibers and one dimensional (1-D) ZnO nanobelts is presented. Three samples were produced in different heat treatment (300°C and 600°C). A new model was introduced to study silica optical fibers. It was found that the green photoluminescence (PL) of samples is obvious but shows some changes in respective atmosphere. Different buffer layers of polyvinly alcohol (PVA) and ZnO thin film are main factors leading to the differences in PL spectrum. These results support that the novel optical fibers obtained by 1-D ZnO nano-material are available and may lead us another road to self-luminous optical fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1727-1732

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Yang, J. Qi, Q. Liao, et al., Applied Physics A: Materials Science & Processing, 94(2009), 799-736.

Google Scholar

[2] X. Cao, N. Wang, L. Wang, et al., Journal of Nanoparticle Research, 12(2010)143-150.

Google Scholar

[3] Y. Li, W. F. Li, G. Xu, et al., Journal of Materials Science, 43(2008)1711-1720.

Google Scholar

[4] V. Kumar, S. Kumar and S. K. Chakarvarti, Journal of Materials Scienc, 21(2010)1277-1285.

Google Scholar

[5] N. Fukata, K. Sato, M. Mitome , et al., ACS Nano. 4(2010)3807-3815.

Google Scholar

[6] J. F. Li, Y. F. Huang, Y. Ding , et al., Nature, 464 (2010)292-301.

Google Scholar

[7] M. Lucas, Z. L. Wang, E. Riedo , et al., Phys. Rev. B, 8(2010)045415-045421.

Google Scholar

[8] R. S. Yadav and A. C. Pandey, Structural Chemistry, 20(2009)847-856.

Google Scholar

[9] A. Gupta, S. Kumar and H. S. Bhatti, Journal of Materials Science: Materials in Electronics, 21(2010)765-772.

Google Scholar

[10] J. Wang, S. Zhang, J. You , et al., Bulletin of Materials Science, 31(2008)597-603.

Google Scholar

[11] Y. Zhao, Functional Thin Films and Nanostructures for Sensors, (2009)1-9.

Google Scholar

[12] M. Abu Haija, K. Vijayalakshmi, J. Zhou , et al., Appl. Phys. Lett. 95(2009)243101-243109.

Google Scholar

[13] K. G. Chandrappa, T. V. Venkatesha, K. Vathsala , etal., Journal of Nanoparticle Research, 12(2010)2667-2675.

Google Scholar

[14] K. G. Chandrappa, T. V. Venkatesha, K. Vathsala , etal., Journal of Materials Science, 45(2010) 2967-2975.

Google Scholar

[15] K. Raidongia and M. Eswaramoorthy, Bulletin of Materials Science, 31(2008)87-95.

Google Scholar

[16] Y. Gong, T. Andelman, et al, Nanoscale Res Lett , 2(2007) 297-305.

Google Scholar

[17] H. Li, C. L. et al, Nanoscale Res Lett , 4 (2009)1183-1192.

Google Scholar

[18] Q. Yang, K. Tang et al, J. Phys. Chem. B , 106(2002)9227-3235.

Google Scholar

[19] S. Kim, J. H. Sung, et al, Langmuir , 25(2009)6155-6161.

Google Scholar

[20] H. Takeshita, T. Kanaya, K. Nishida, K. Kaji, Macromolecules, 34(2001)7894-7912.

Google Scholar