3D Coupled Thermo-Mechanical FE Analysis of Surface Defects in Continuously Casting Slab

Article Preview

Abstract:

The behaviour of the surface defects on the continuous casting slab during hot rolling is investigated using the commercial FE-code LS-DYNA. The thermo-elastic-plastic material model is chosen in the simulation models, and the material implemented in the simulation is the austenitic stainless steel 304. The numerical results show the significant morphological changes of the surface defects during hot rolling and afford valuable indications for a deeper understanding of the underlying process. An accelerated crack growth and propagation are observed for the edge cracks, and the closure behaviour is found in the transverse and longitudinal cracks. The effect of temperature is significant on both the roll and the strip in hot rolling process. The developed models consider different types of mesh and element, thermal conditions, and rolling schedules. The predicted relationship between rolling conditions, the temperature distribution of crack, and the full history of temperature variation are discussed in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2214-2220

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ervasti and U. Stahlberg: J. Mater. Process. Technol., Vol. 101 (2000), p.312.

Google Scholar

[2] L.F. Zhang: J. Iron steel Res. Int., Vol. 13 (2006), p.1.

Google Scholar

[3] E. Ervasti and U. Stahlberg: J. Mater. Process. Technol., Vol. 170 (2005), p.142.

Google Scholar

[4] X. Duan and T. Sheppard: Int. J. Mech. Sci, Vol. 44 (2002), p.2155.

Google Scholar

[5] K. Tripathy, S. Das, M.K. Jha, J.B. Singh and A.M. Kumar: Iron. Steel., Vol. 33. (2006), p.478.

Google Scholar

[6] R. Balcombe, M.T. Fowell, A.V. Olver, S. Ioannides and D. Dini: Wear., Vol. 271 (2011), p.721.

Google Scholar

[7] A.K. Bhattacharya, S. Debjani, A. Roychowdhury and J. Das: IEEE. CEC. (2007), p.4000.

Google Scholar

[8] M.H. Trejo, J.J. Ruiz, M. C. Roman and H. Solis: Iron. Steel., Vol. 37. (2010), p.6.

Google Scholar

[9] S. Moir and J. Preston: J. Mater. Process. Technol., Vol. 125-126 (2002), p.721.

Google Scholar

[10] E. Mancini, M. Sasso, D. Amodio, R. Ferretti and F. Sanfilippo: J. Tribol., Vol. 133 (2011), p.2.

Google Scholar

[11] G.G. Lee, B.G. Thomas, S.H. Kim and H.J. Shin: Acta Mater., Vol. 55 (2007), p.6706.

Google Scholar

[12] W. Deng, D.W. Zhao, X.M. Qin and L.X. Du: Compt. Mater. Sci., Vol. 47 (2009), p.439.

Google Scholar

[13] B. Hwang, H.S. Lee, Y.G. Kim and S. Lee: Mater. Sci. Eng. A, Vol. 402 (2005), p.178.

Google Scholar

[14] C. Luo and U. Stahlberg, J. Mater. Process. Technol., Vol. 114 (2001), p.96.

Google Scholar

[15] J.B. Delbos, G. Kermouche and J. Rech: J. Mater. Process. Technol., Vol. 164-165 (2005), p.1186.

Google Scholar

[16] A. Kainz, S. Llie, E. Parteder and K. Zeman: Steel. Res. Int. Vol. 79 (2008), p.863.

Google Scholar