Nanowelding Technology Study Based on Simulation Methods

Article Preview

Abstract:

Simulation study on nanowelding technology is important to improve nanowelding parameters, analyze the properties of welded structure, reveal the mechanism of nanowelding. In this paper, the progress of simulation study on nanowelding technology has been reviewed. The key and difficulties of this technology are proposed. The applications of molecular dynamics and quantum mechanics in nanowelding simulation study are introduced. Nanowelding technology is studied by molecular dynamics (MD) method, and the mechanism of ultrasonic nanowelding is revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2272-2275

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Meyyappan, Editor, Canbon Nanotubes: Science and Application, CRC Press, Boca Raton(2005).

Google Scholar

[2] S. Iijima, Nature. 354, 56(1991).

Google Scholar

[3] W. Hoenlein, F. Kreupl, S. G. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger, Editor. Carbon nanotubes for microelectronics: status and future prospects. Current Trends in Nanoscience - From Materials to Application Proceedings of Symposium A, (2003).

DOI: 10.1016/j.msec.2003.09.153

Google Scholar

[4] F. Banhart, Nano Lett. 1, 329(2001).

Google Scholar

[5] H. W. C. Postma, M. de Jonge, Z Yao, C. Dekker, Phys. Rev. B 62, 10653(2000).

Google Scholar

[6] P. W. Chiu, G. S. Duesberg,U. Dettlaff-Weglikowska, S. Roth, Appl. Phys. Lett. 80, 3811(2002).

DOI: 10.1063/1.1480487

Google Scholar

[7] B. Ni, R Andrews, D. Jacques, D. Qian, M. B. J. Wijesundara, Y. S. Choi, L. Hanley, S. B. J. Sinnott, Phys. Chem. B 105, 12719(2001).

Google Scholar

[8] C. Chen, L. J. Yan, E. Siu-Wai Kong, Y. Zhang, Nanotechnology 17, 2192(2006).

Google Scholar

[9] K. Metenier, S. Bonnamy, F. Beguin, C. Journet, P. Bernier, M. L. de La Chapelle, O. Chauvet, S. Lefrant, Carbon 40, 1765(2002).

DOI: 10.1016/s0008-6223(02)00044-1

Google Scholar

[10] F.Y. Meng, S.Q. Shi, D.S. Xu, R. Yang, Carbon 44, 7(2006).

Google Scholar

[11] M. Menon, A. N. Andriotis, D. Srivastava, I. Ponomareva, L. A. Chernozatonskii, Phys. Rev. Lett. 91, 14(2003).

Google Scholar

[12] X. H. Song, S. Liu, Z. Y. Gan, H. Yan, Y. Ai, J. Appl. Phys. 106, 12(2009).

Google Scholar

[13] Y. Matsuda, W. Q. Deng, W. A. Goddard, J. Phys. Chem. C 29, 111 (2007).

Google Scholar

[14] N. Nemec, D. Tománek, G. Cuniberti, Phys. Rev. Lett. 96, 7(2006).

Google Scholar

[15] A Smolyanitsky, V. K. Tewary, Nanotechnology 22, 8(2011).

Google Scholar

[16] C. Chen, D. Xu, Eric S. W. Kong, Y. Zhang, Electron Device Letter, IEEE 27, 10(2006).

Google Scholar