[1]
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range: J. Acoust. Soc. Amer. Vol. 28 (1956), p.168.
DOI: 10.1121/1.1908239
Google Scholar
[2]
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency: J. Acoust. Soc. Amer. Vol. 28 (1956), p.179.
DOI: 10.1121/1.1908241
Google Scholar
[3]
M. A. Biot, Mechanics of deformation and acoustic propagation in porous media: J. Appl. Phys. Vol. 33 (1962), p.1482.
Google Scholar
[4]
X. M. Shao and Z. L. Lan, Finite element method for the equation of waves in fluid-saturated porous media: Chinese Journal of Geophysics Vol 43 (2000), p.264.
Google Scholar
[5]
S. Osher and J. A. Sethian, Fronts propagation with curvature-dependent speed: algorithms based on Hamilton-Jacobi formations: J. Comp. Phys. Vol. 79 (1988), p.19.
DOI: 10.1016/0021-9991(88)90002-2
Google Scholar
[6]
M. Hintermuller and W. Ring, A second order shape optimization approach for image segmentation: SIAM J. Appl. Math. Vol. 64 (2003), p.442.
DOI: 10.1137/s0036139902403901
Google Scholar
[7]
F. Santosa, A level-set approach for inverse problems involving obstacles: ESAIM: Control, Optimisation and Calculus of Variations Vol. 1 (1996), p.17.
DOI: 10.1051/cocv:1996101
Google Scholar
[8]
M. Burger, A level set method of inverse problems: Inverse Problems Vol. 17 (2001), p.1327.
DOI: 10.1088/0266-5611/17/5/307
Google Scholar
[9]
X. C. Tai and H. W. Li, A piecewise constant level set method for elliptic inverse problems: Appl. Num. Math. Vol. 57 (2007), p.686.
DOI: 10.1016/j.apnum.2006.07.010
Google Scholar
[10]
L A. Leitao and O. Scherzer, On the relation between constraint regularization, level sets, and shape optimization: Inverse Problems Vol. 19 (2003), p. L1.
DOI: 10.1088/0266-5611/19/1/101
Google Scholar