A Multi-Scale and Level Set Algorithm for the Inverse Problem of Wave Equation

Article Preview

Abstract:

In this paper, we construct the multi-scale and level set algorithm of the parameter recovery for the elastic wave equations in the fluid-saturated porous media. Firstly, based on the Biot theory, we apply the multi-scale method to simulate the propagation of 2-D elastic wave in fluid-saturated porous media. Secondly, the level set method is introduced to the general parameter estimation problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-416

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid: low-frequency range: J. Acoust. Soc. Amer. Vol. 28 (1956), p.168.

DOI: 10.1121/1.1908239

Google Scholar

[2] M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid: higher-frequency: J. Acoust. Soc. Amer. Vol. 28 (1956), p.179.

DOI: 10.1121/1.1908241

Google Scholar

[3] M. A. Biot, Mechanics of deformation and acoustic propagation in porous media: J. Appl. Phys. Vol. 33 (1962), p.1482.

Google Scholar

[4] X. M. Shao and Z. L. Lan, Finite element method for the equation of waves in fluid-saturated porous media: Chinese Journal of Geophysics Vol 43 (2000), p.264.

Google Scholar

[5] S. Osher and J. A. Sethian, Fronts propagation with curvature-dependent speed: algorithms based on Hamilton-Jacobi formations: J. Comp. Phys. Vol. 79 (1988), p.19.

DOI: 10.1016/0021-9991(88)90002-2

Google Scholar

[6] M. Hintermuller and W. Ring, A second order shape optimization approach for image segmentation: SIAM J. Appl. Math. Vol. 64 (2003), p.442.

DOI: 10.1137/s0036139902403901

Google Scholar

[7] F. Santosa, A level-set approach for inverse problems involving obstacles: ESAIM: Control, Optimisation and Calculus of Variations Vol. 1 (1996), p.17.

DOI: 10.1051/cocv:1996101

Google Scholar

[8] M. Burger, A level set method of inverse problems: Inverse Problems Vol. 17 (2001), p.1327.

DOI: 10.1088/0266-5611/17/5/307

Google Scholar

[9] X. C. Tai and H. W. Li, A piecewise constant level set method for elliptic inverse problems: Appl. Num. Math. Vol. 57 (2007), p.686.

DOI: 10.1016/j.apnum.2006.07.010

Google Scholar

[10] L A. Leitao and O. Scherzer, On the relation between constraint regularization, level sets, and shape optimization: Inverse Problems Vol. 19 (2003), p. L1.

DOI: 10.1088/0266-5611/19/1/101

Google Scholar