[1]
Steven L. Ceccio. Friction Drag Reduction of External Flows with Bubble and Gas Injection. Annu Rev Fluid Mech. 2010. 42: 183-203.
DOI: 10.1146/annurev-fluid-121108-145504
Google Scholar
[2]
A.D. Vasin, Calculation of Axisymmetric Cavities Downstream of a Disk in a Supersonic Flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1997, No. 4: 54-62.
Google Scholar
[3]
V. Serebryakov,G. Schnerr,Some Problems of Hydrodynamics For Sub- and Supersonic Motion in Water with Supercavitation, Fifth International Symposium on Cavitation, Osaka, Japan, (2003).
Google Scholar
[4]
Dellanoy,Y., and Kueny, J.L. , 1990, Two-phase Flow Approach in Unsteady Cavitation Modeling, Cavitation and Multiphase Flow Forum, ASME, New York, ASME-FED Vol. 98, pp.153-158.
Google Scholar
[5]
Coutier-Delgosha, O., Reboud, J. -L., and Delannoy, Y., 2003, Numerical Simulations in Unsteady Cavitating Flows, Int. J. Numer. Methods Fluids, 42, p.527–548.
Google Scholar
[6]
Song, C., and He, J., 1998, Numerical Simulation of Cavitating Flows by Single-Phase Flow Approach, Proc. of 3rd International Symposiumon on Cavitation, J.M. Michel and H. Kato, eds., April 7-10, Song and He, Grenoble, pp.295-300.
Google Scholar
[7]
Leroux, J. B., Coutier-Delgosha, O., and Astolfi, J. A., 2005, A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil, Phys. Fluids, 17(5), 052101.
DOI: 10.1063/1.1865692
Google Scholar
[8]
Merkle, C.L., Feng, J., and Buelow, P.E.O., 1998, Computational Modeling of the Dynamics of Sheet Cavitation, Proc. of 3rd Intl. Sym. on Cavitation, J.M. Michel and H. Kato, eds., Editons, Grenoble, Vol. 2, pp.307-314.
Google Scholar
[9]
Shin, B.R., Ikohagi, T., 1998, A Numerical Study of Unsteady Cavitating Flows, Proceedings of 3rd International Symposium on Cavitation, Grenoble, France, pp.301-306.
Google Scholar
[10]
Grogger, HA., Alajbegovic, A., 1998, Calculation of the cavitating flow in venturi geometries using two fluid model, ASME Paper FEDSM , 98-5295.
Google Scholar
[11]
Kunz R.F., Gibeking H.H., Maxey M.R., Tryggvason G., Fontaine A. A, Petrie H.L., and Ceccio S.L., 2007, Validation of Two-Fluid Eulerian CFD Modeling for Microbubble Drag Reduction Across a Wide Range of Reynolds Numbers, ASME, 129, pp.66-79.
DOI: 10.1115/1.2375124
Google Scholar
[12]
Kunz R.F., Deutsch S., and Lindau J.W., 2003, Two Fluid Modeling of Microbubble Turbulent Drag Reduction, " ASME paper No. FED3003-45640, Proceeding of FEDSM, 03: 4TH ASME-JSME Joint Fluids Engineering Conference , Honolulu, Hawaii, July 6-11, ASME, New York.
DOI: 10.1115/fedsm2003-45640
Google Scholar
[13]
Jules W. Lindau, Robert F. Kunz, Jason M. Mulherin, James J. Dreyer, David R. Stinebring. Fully Coupled 6-Dof to Urans Modeling of Cavitating Flows Around a Supercavitating Vehicle. Fifth International Symposium on Cavitation (CAV2003) Osaka, Japan, 2003: Cav03-OS-7-019.
Google Scholar
[14]
Kunz, D.A. Boger T.S. Chyczeweki, et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. Third ASME/JSME Joint Fluids Engineering Coference . San Francisco, California, 1999: FEDSM99-7364.
Google Scholar
[15]
Savchenko Y. N., 2001, Experimental Investigation of Supercavitating Motion of Bodies. VKI Special Course on Supercavitating Flows, Brussels, RTO-EN-010(4).
Google Scholar
[16]
Yu Kaiping, Zhou Jingjun, Min Jingxin, Zhang Guang. A contribution to study on the lift of ventilated supercavitating vehicle with low Froude number. Journal of Fluids Engineering. ASME, 2010, 132(11).
DOI: 10.1115/1.4002873
Google Scholar