[1]
N. D. Ham. Helicopter individual-blade-control research at MIT 1977-1985. Vertica, 11(1): 109-122, (1987).
Google Scholar
[2]
Shaw, J. and Albion, N. Active Control of Rotor Blade Pitch for Vibration Reduction: A Wind Tunnel Demonstration. Vertica, Vol. 4, 1980, pp.3-11.
Google Scholar
[3]
Nguyen, K. and Chopra, I., Application of Higher Harmonic Control to Rotor Operating at High Speed and Thrust. Journal of the American Helicopter Society, July 1990, pp.78-89.
DOI: 10.4050/jahs.35.78
Google Scholar
[4]
Ham, N. D. A Simple System for Helicopter Individual Blade Control Using Modal Decomposition, Vertica. Vol. 4, 1980, pp.23-2.
Google Scholar
[5]
Guinn, K. F. Individual Blade Control Independent of a Swashplate, Journal of the American Helicopter Society. July 1982, pp.25-31.
DOI: 10.4050/jahs.27.3.25
Google Scholar
[6]
Chiu, T., and Friedmann, P. P. Vibration Suppression in Helicopter Rotor/Flexible Fuselage System Using the ACSR Approach With Disturbance Rejection. Proceedings of the 52nd AHS Forum, Washington D.C., June 4-6, 1996, pp.736-757.
DOI: 10.2514/6.1996-1547
Google Scholar
[7]
Goodman, R. K. and Millott, T. A. Design, Development, and Flight Testing of the Active Vibration Control System for the Sikorsky S92. Proceedings of the 56th AHS Forum, Virginia Beach, Virginia, May 2-4, (2000).
Google Scholar
[8]
Chen, P.C., and Chopra, I. Hover Testing of Smart Rotor with Induced Strain Actuation of Blade Twist. AIAA Journal, Vol. 35. No. 1, 1997, pp.6-16.
DOI: 10.2514/3.13457
Google Scholar
[9]
Milgram, J.H., and Chopra, I. Helicopter Vibration Reduction with Trailing-Edge Flaps. Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, New Orleans, LA, April1995, pp.601-612.
DOI: 10.2514/6.1995-1227
Google Scholar
[10]
Straub, F. K. and Hassan, A. A. Aeromechanic Considerations in the Design of a Rotor with Smart Material actuated Trailing Edge Flaps. Proceedings of the 52nd AHS Forum, Washington D.C., June 4-6, 1996, pp.704-714.
Google Scholar
[11]
Straub, F. K. and Charles, B. D. Aeroelastic Analysis Of Rotors With Trailing Edge Flaps Using Comprehensive Codes, Journal of the American Helicopter Society. Vol. 46, No. 3, July 2001, pp.192-199.
DOI: 10.4050/jahs.46.192
Google Scholar
[12]
Kim, J. -S. Wang, K.W., and Smith, E.C. High authority piezoelectric actuation system synthesis through mechanical resonance and electrical tailoring. Journal of Intelligent Materials and Systems, 16(1), 2005, pp.21-31.
DOI: 10.1177/1045389x05046686
Google Scholar
[13]
Standards Committee of the IEEE Ultrasonics, Ferroelctrics, and Frequency Control Society, 1987. An American National Standard: IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, ANSI/IEEE Std 176-1987, New York.
DOI: 10.1109/tuffc.1996.535477
Google Scholar
[14]
Theodorson, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Report No. 496, (1935).
Google Scholar
[15]
S. Q. Wu and M. J. Er. Dynamic Fuzzy Neural Networks: A Novel Approach to Function Approximation. IEEE Trans Syst, Man, Cybern. Part B. 2000. 30: 358-364.
DOI: 10.1109/3477.836384
Google Scholar
[16]
Y. Gao and M. J. Er. Online Adaptive Fuzzy Neural Identification and Control of a Class of MIMO Nonlinear Systems, IEEE Trans. Fuzzy Syst. vol. 11, Aug. 2003, pp.462-477.
DOI: 10.1109/tfuzz.2003.814833
Google Scholar