[1]
J. A. Canny, Computational approach to edge detection, IEEE T. Pattern Anal. 8 (1986) 678-698.
Google Scholar
[2]
S. K. Pal, R. A. King, On edge detection of x-ray image using fuzzy sets, IEEE T. Pattern Anal. 5 (1983) 69 -77.
Google Scholar
[3]
S. Mallat, S. Zhong, Characterization of signals from multi-scale edges, IEEE T. Pattern Anal. 14 (1992) 710-732.
DOI: 10.1109/34.142909
Google Scholar
[4]
C. H. Chao, A. P. Dhawan, Edge detection using a hopfield neural network, Opt. Eng. 33 (1994) 3739-3747.
DOI: 10.1117/12.181152
Google Scholar
[5]
H. Yang, D. Liang, A new method of edge detection based on information measure and neural network, ACTA Eletronica SINICA 299 (2001) 51-53.
Google Scholar
[6]
C. Cortes, V. Vapnik, Support Vector Networks, Mach. Learn. 20 (1995) 273-297.
DOI: 10.1007/bf00994018
Google Scholar
[7]
C. J. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Min. Knowl. Disc. 2 (1998) 955-974.
Google Scholar
[8]
Q. X. Yang, S. N. Wang, N. Ahuja, SVM for Edge-Preserving Filtering, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 1775-1782.
DOI: 10.1109/cvpr.2010.5539847
Google Scholar
[9]
Z. He, W. Sun, W. Lu, H. Lu, Digital image splicing detection based on approximate run length, Pattern Recogn. Lett. 32 (2011) 1591-1597.
DOI: 10.1016/j.patrec.2011.05.013
Google Scholar
[10]
K. Kozempel, M. Hausburg, R. Reulke, Airborne vehicle detection using SURF-descriptors and Support Vector Machines, 2011 IEEE Forum on Integrated and Sustainable Transportation Systems (FISTS 2011): 73-78.
DOI: 10.1109/fists.2011.5973598
Google Scholar
[11]
M. Li, X. Cai, Color image edge detection approach based on SVM and multi-featured extraction, Computer Engineering and Design 33 (2012) 639-643.
Google Scholar
[12]
L. Guo, P. S. Ge, M. H. Zhang, L. H. Li, Y. B. Zhao, Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine, Expert Sys. Appl. 39 (2012)4274-4286.
DOI: 10.1016/j.eswa.2011.09.106
Google Scholar