Nonlinear Dynamic Characteristics of Giant Magnetostrictive Nanofilm-SMA Composite Beam in Axial Stochastic Excitation

Article Preview

Abstract:

In this paper, nonlinear dynamic characteristics of giant magnetostructive nanofilm-shape memory alloy (SMA) composite beam in axial stochastic excitation were studied. Von del Pol nonlinear difference item was introduced to interpret the hysteresis phenomenon of the strain-stress curve of SMA, and the hysteretic nonlinear dynamic model of giant magnetostructive nanofilm-SMA composite beam in axial stochastic excitation was developed. The steady-state probability density function and the joint probability density function of the system were obtained in quasi-nonintegrable Hamiltonian system theory. The result of simulation shows that the stability of the trivial solution varies with bifurcation parameter, and stochastic Hopf bifurcation appears in the process. The result is helpful to stochastic bifurcation control to giant magnetostructive nanofilm-SMA composite beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. T. Lau, Vibration characteristics of SMA composite beams with different boundary conditions, Mat. Des. 23 (2002) 741-749.

DOI: 10.1016/s0261-3069(02)00069-9

Google Scholar

[2] K. M. Liew, J. Ren, S. Kitipornchai, Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method, Eng. Ana. Bou. Ele. 28 (2004) 497-507.

DOI: 10.1016/s0955-7997(03)00103-6

Google Scholar

[3] A. Zbiciak, Dynamic analysis of pseudoelastic SMA beam, Int. J. Mech. Sci. 52 (2010) 56-64.

Google Scholar

[4] F. Scarpa, M. Ruzzene, M. R. Hassan, Spectral element formulation for SMA beams under random vibration excitation, Sma. Str. Mat. 5387 (2004) 286-293.

DOI: 10.1117/12.545968

Google Scholar

[5] S. M. T. Hashemi, S. E. Khadem, Modeling and analysis of the vibration behavior of a shape memory alloy beam, Int. J. Mech. Sci. 48 (2006) 44-52.

DOI: 10.1016/j.ijmecsci.2005.09.011

Google Scholar

[6] M. Collet, E. Foltete, C. Lexcellent, Analysis of the behavior of a shape memory alloy beam under dynamical loading, Euro. J. Mech. A. 20 (2001) 615-630.

DOI: 10.1016/s0997-7538(01)01159-7

Google Scholar

[7] Z. Y. Jia, W. Liu, Y. S. Zhang, A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields, Sen. Act. A. 128 (2006) 158-164.

DOI: 10.1016/j.sna.2006.01.018

Google Scholar

[8] H. Y. Chen, Q. X. Yang, S. Z. Liu, Element-free Galerkin modeling of giant magnetostrictive thin films, IEEE Trans. Mag. 41 (2005) 1512-1515.

DOI: 10.1109/tmag.2005.845075

Google Scholar

[9] Q. X. Yang, H. Y. Chen, S. Z. Liu, Dynamic modeling of a magnetic system constructed with giant magnetostrictive thin film using element-free Galerkin method, IEEE Trans. Mag. 42 (2006) 939-942.

DOI: 10.1109/tmag.2006.871669

Google Scholar

[10] S. Masuda, Y. Matsumura, Y. Nishi, High responsiveness composite mover device constructed with positive and negative giant magnetostrictive films, J. Jap. Ins. Met. 70 (2006) 166-168.

DOI: 10.2320/jinstmet.70.166

Google Scholar

[11] W. Liu, X. H. Jia, F. J. Wang, An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film, Sen. Act. A. 160 (2010) 101-108.

DOI: 10.1016/j.sna.2010.04.014

Google Scholar

[12] N. Tiercelin, P. Pernod, V. Preobrazhensky, Non-linear actuation of cantilevers using giant magnetostrictive thin films, Ultras. 38 (2000) 64-66.

DOI: 10.1016/s0041-624x(99)00061-x

Google Scholar

[13] N. Tiercelin, V. Preobrazhensky, P. Pernod, Sub-harmonic excitation of a planar magneto-mechanical system by means of giant magnetostrictive thin films, J. Mag. Mag. Mat. 210 (2000) 302-308.

DOI: 10.1016/s0304-8853(99)00658-7

Google Scholar

[14] K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res. Mech. 18 (1986) 251-263.

Google Scholar

[15] J. G. Boyd, D. C. Lagoudas, Thermodynamical constitutive model for shape memory materials, Int. J. Pla. 12 (1996) 805-842.

DOI: 10.1016/s0749-6419(96)00030-7

Google Scholar

[16] L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with nonconstant material functions and redefined martensite internal variable, J. Int. Mat. Sys. Str. 4 (1993) 229-242.

DOI: 10.1177/1045389x9300400213

Google Scholar

[17] E.J. Graesser, F.A. Cozzarelli, A proposed three-dimensional constitutive model for Shape memory alloys, J. Int. Mat. Sys. Str. 5 (1994) 78-89.

DOI: 10.1177/1045389x9400500109

Google Scholar

[18] Y. Ivshin, T. J. Pence, Thermomechanical model for a one variant shape memory material, J. Int. Mat. Sys. Str. 5 (1994) 455-473.

DOI: 10.1177/1045389x9400500402

Google Scholar

[19] F. Auricchio, J. Lubliner, Uniaxial model for shape-memory alloys, Int. J. Sol. Str. 34 (1997) 3601-3618.

DOI: 10.1016/s0020-7683(96)00232-6

Google Scholar

[20] Z. W. Zhu, J. Wang, J. Xu, Modeling of shape memory alloy based on hysteretic nonlinear theory, App. Mech. Mat. 44 (2010) 537-541.

DOI: 10.4028/www.scientific.net/amm.44-47.537

Google Scholar

[21] M. A. Savi, P. M. Pacheeo, M. B. Braga, Chaos in shape memory two-bar truss, Int. J. Non. Mech. 37 (2002) 1387-1395.

DOI: 10.1016/s0020-7462(02)00029-x

Google Scholar

[22] A. S. Kumar, S. M. Sivakumar, Numerical simulation of shape memory effect and superelasticity in SMA wires and beam, Sma. Mat. Str. Sys. 5062 (2003) 936-943.

DOI: 10.1117/12.514376

Google Scholar

[23] M. S. Speicher, R. DesRoches, R. T. Leon, Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection, Eng. Str. 33 (2011) 2448-2457.

DOI: 10.1016/j.engstruct.2011.04.018

Google Scholar