[1]
K. T. Lau, Vibration characteristics of SMA composite beams with different boundary conditions, Mat. Des. 23 (2002) 741-749.
DOI: 10.1016/s0261-3069(02)00069-9
Google Scholar
[2]
K. M. Liew, J. Ren, S. Kitipornchai, Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method, Eng. Ana. Bou. Ele. 28 (2004) 497-507.
DOI: 10.1016/s0955-7997(03)00103-6
Google Scholar
[3]
A. Zbiciak, Dynamic analysis of pseudoelastic SMA beam, Int. J. Mech. Sci. 52 (2010) 56-64.
Google Scholar
[4]
F. Scarpa, M. Ruzzene, M. R. Hassan, Spectral element formulation for SMA beams under random vibration excitation, Sma. Str. Mat. 5387 (2004) 286-293.
DOI: 10.1117/12.545968
Google Scholar
[5]
S. M. T. Hashemi, S. E. Khadem, Modeling and analysis of the vibration behavior of a shape memory alloy beam, Int. J. Mech. Sci. 48 (2006) 44-52.
DOI: 10.1016/j.ijmecsci.2005.09.011
Google Scholar
[6]
M. Collet, E. Foltete, C. Lexcellent, Analysis of the behavior of a shape memory alloy beam under dynamical loading, Euro. J. Mech. A. 20 (2001) 615-630.
DOI: 10.1016/s0997-7538(01)01159-7
Google Scholar
[7]
Z. Y. Jia, W. Liu, Y. S. Zhang, A nonlinear magnetomechanical coupling model of giant magnetostrictive thin films at low magnetic fields, Sen. Act. A. 128 (2006) 158-164.
DOI: 10.1016/j.sna.2006.01.018
Google Scholar
[8]
H. Y. Chen, Q. X. Yang, S. Z. Liu, Element-free Galerkin modeling of giant magnetostrictive thin films, IEEE Trans. Mag. 41 (2005) 1512-1515.
DOI: 10.1109/tmag.2005.845075
Google Scholar
[9]
Q. X. Yang, H. Y. Chen, S. Z. Liu, Dynamic modeling of a magnetic system constructed with giant magnetostrictive thin film using element-free Galerkin method, IEEE Trans. Mag. 42 (2006) 939-942.
DOI: 10.1109/tmag.2006.871669
Google Scholar
[10]
S. Masuda, Y. Matsumura, Y. Nishi, High responsiveness composite mover device constructed with positive and negative giant magnetostrictive films, J. Jap. Ins. Met. 70 (2006) 166-168.
DOI: 10.2320/jinstmet.70.166
Google Scholar
[11]
W. Liu, X. H. Jia, F. J. Wang, An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film, Sen. Act. A. 160 (2010) 101-108.
DOI: 10.1016/j.sna.2010.04.014
Google Scholar
[12]
N. Tiercelin, P. Pernod, V. Preobrazhensky, Non-linear actuation of cantilevers using giant magnetostrictive thin films, Ultras. 38 (2000) 64-66.
DOI: 10.1016/s0041-624x(99)00061-x
Google Scholar
[13]
N. Tiercelin, V. Preobrazhensky, P. Pernod, Sub-harmonic excitation of a planar magneto-mechanical system by means of giant magnetostrictive thin films, J. Mag. Mag. Mat. 210 (2000) 302-308.
DOI: 10.1016/s0304-8853(99)00658-7
Google Scholar
[14]
K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res. Mech. 18 (1986) 251-263.
Google Scholar
[15]
J. G. Boyd, D. C. Lagoudas, Thermodynamical constitutive model for shape memory materials, Int. J. Pla. 12 (1996) 805-842.
DOI: 10.1016/s0749-6419(96)00030-7
Google Scholar
[16]
L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with nonconstant material functions and redefined martensite internal variable, J. Int. Mat. Sys. Str. 4 (1993) 229-242.
DOI: 10.1177/1045389x9300400213
Google Scholar
[17]
E.J. Graesser, F.A. Cozzarelli, A proposed three-dimensional constitutive model for Shape memory alloys, J. Int. Mat. Sys. Str. 5 (1994) 78-89.
DOI: 10.1177/1045389x9400500109
Google Scholar
[18]
Y. Ivshin, T. J. Pence, Thermomechanical model for a one variant shape memory material, J. Int. Mat. Sys. Str. 5 (1994) 455-473.
DOI: 10.1177/1045389x9400500402
Google Scholar
[19]
F. Auricchio, J. Lubliner, Uniaxial model for shape-memory alloys, Int. J. Sol. Str. 34 (1997) 3601-3618.
DOI: 10.1016/s0020-7683(96)00232-6
Google Scholar
[20]
Z. W. Zhu, J. Wang, J. Xu, Modeling of shape memory alloy based on hysteretic nonlinear theory, App. Mech. Mat. 44 (2010) 537-541.
DOI: 10.4028/www.scientific.net/amm.44-47.537
Google Scholar
[21]
M. A. Savi, P. M. Pacheeo, M. B. Braga, Chaos in shape memory two-bar truss, Int. J. Non. Mech. 37 (2002) 1387-1395.
DOI: 10.1016/s0020-7462(02)00029-x
Google Scholar
[22]
A. S. Kumar, S. M. Sivakumar, Numerical simulation of shape memory effect and superelasticity in SMA wires and beam, Sma. Mat. Str. Sys. 5062 (2003) 936-943.
DOI: 10.1117/12.514376
Google Scholar
[23]
M. S. Speicher, R. DesRoches, R. T. Leon, Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection, Eng. Str. 33 (2011) 2448-2457.
DOI: 10.1016/j.engstruct.2011.04.018
Google Scholar