[1]
M. Moshe, Y. C. Eldar; From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals, IEEE Journal of selected topics in signal processing Vol. 4 (2010), pp.375-391.
DOI: 10.1109/jstsp.2010.2042414
Google Scholar
[2]
J. G. Proakis; Digital Communications/Publishing house of Electronics industry, Beijing (2009).
Google Scholar
[3]
M. Moshe, Y. C. Eldar; Xampling: analog to digital at sub-Nyquist rates. IET Circuits Devices Syst. Vol. 5 (2011), pp.8-20.
DOI: 10.1049/iet-cds.2010.0147
Google Scholar
[4]
M. Moshe, Y. C. Eldar; Compressed Sensing: Theory and Applications/Cambridge University Press, Cambridge (2012).
Google Scholar
[5]
Y.L. Chen, M. Moshe; Modulated Wideband Conveter with Non-ideal Lowpass Filters, ICASSP (2010) pp.3630-3633.
Google Scholar
[6]
Information on http: /parametric. linear. com/downconverting_mixers.
Google Scholar
[7]
Information on http: /www. avagotech. com/pages/en/rf_microwave/mixers.
Google Scholar
[8]
Information on http: /www. nati onal. com/appinfo/adc/files/definition of terms. pdf.
Google Scholar
[9]
Information on http: /www. analog. com/en/analog-to-digitalconverters/adconverters/products/ind ex. html.
Google Scholar
[10]
A.I. Zverev; Handbook of Filter Synthesis/Wiley-Interscience, NY(1967).
Google Scholar
[11]
Y. H. Wang, J. A. Zhang; Research on time-interleaved ADC, Microelectronics, Vol. 40 (2010), pp.165-168.
Google Scholar
[12]
W. Black, D. Hodges; Time interleaved converter arrays, Solid-State Circuits Conference, Vol. XXIII ( 1980), p.14–15.
DOI: 10.1109/isscc.1980.1156111
Google Scholar
[13]
J. N. Laska, S. Kirolos; Theory and implementation of an analog-to-information converter using random demodulation, Proc. IEEE Int. Sym. Circuits and System, Vol. 5 (2007) p.1959-(1962).
DOI: 10.1109/iscas.2007.378360
Google Scholar
[14]
J. A. Tropp, J. N. Laska; Beyond Nyquist: Efficient sampling of sparse bandlimited signals. arXiv. org 0902. 0026, (2009).
Google Scholar
[15]
E. J. Cand`es, J. Romberg; Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inform. Theory Vol. 52 (2006), pp.489-509.
DOI: 10.1109/tit.2005.862083
Google Scholar
[16]
D. L. Donoho; Compressed sensing. IEEE Trans. Inform. Theory Vol. 52 (2006), pp.1289-1306.
DOI: 10.1109/tit.2006.871582
Google Scholar
[17]
M. Moshe, Y. C. Eldar; Reduce and boost: Recovering arbitrary sets of jointly sparse vectors. IEEE Trans. Signal Processing, Vol. 56 (2008), pp.4692-4702.
DOI: 10.1109/tsp.2008.927802
Google Scholar
[18]
S. F. Cotter, B. D. Rao; Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Processing, Vol. 53 (2005), pp.2477-2488.
DOI: 10.1109/tsp.2005.849172
Google Scholar
[19]
H. S. Van, J. Vandewalle; The total least-squares problem: computational aspects and analysis. Frontier in Applied Mathematics Vol. 9, Philadelphia, PA: SIAM(1991).
Google Scholar