Rapid Discrimination of Bacteria and Bacteriophages by Raman Spectroscopy

Article Preview

Abstract:

An accurate, high sensitivity and rapid identification assay of bacterial and virus is extremely important in areas such as medical diagnosis, biological research, and environmental monitoring. Raman spectra generates from the molecular species often referred to as ‘whole-organism fingerprinting’ being able to give comprehensive quantitative information about the overall biochemical composition of a microbial sample. Rapid discrimination of bacteria and bacteriaphage can be great important for food, environment and clinical diagnosis. Raman spectra of bacteria stains (Salmonella, Acinetobacter baumannii, Klebsiella pneumoniae) and their related bacteriaphages were analyzed. Raman pattern indicated the characteristic peaks and intensity difference between either bacteria nor phages. Barcode analysis, the intensity of 21 majority peaks summarized from the spectral interval 400–1200 nm showed the distinguishable data code for those cells. The present results suggest that both bacteria (micron) and phages (sub micron) can be directly discriminated by their Raman fingerprint and the barcode analysis method may help us transfer the complex spectra into easily and readability data

You might also be interested in these eBooks

Info:

Periodical:

Pages:

523-527

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Prinz, M. Schoniger, R. Rad, I. Becker, E. Keiditsch, S. Wagenpfeil, M. Classen, T. Rosch, W. Schepp and Gerhard, M. Can. Res. 61, 1903-1909(2001).

Google Scholar

[2] S.A. Barshick, D.A. Wolf and A.A. Vass, Anal. Chem. 71, 633-641(1999).

Google Scholar

[3] H.G.M. Edwards, N.C. Russell, R. Weinstein and D.D. Wynn-Williams, J. Raman Spectrosc. 26, 911-916(1995).

DOI: 10.1002/jrs.1250260843

Google Scholar

[4] K. Maquelin, L.P. Choo-Smith, H.P. Endtz, H.A. Bruining and G.J. Puppels, J. Clin. Microbiol. 40, 594-600(2002).

DOI: 10.1128/jcm.40.2.594-600.2002

Google Scholar

[5] M.S. Ibelings, K. Maquelin, H.P. Endtz, H.A. Bruining and G.J. Puppels, Clin. Microbiol. Infect. 11, 353-358(2005).

DOI: 10.1111/j.1469-0691.2005.01103.x

Google Scholar

[6] J.T. Magee, 1993. Whole-organism fingerprinting. In: Goodfellow, M., O'Donnell, A.G. (Eds. ), Handbook of New Bacterial Systematics. Academic Press, London, p.383– 427.

Google Scholar

[7] J. Popp, W. Kiefer and M. Schmitt, Mol. Struct. 661-662, 363-369(2003).

Google Scholar

[8] D. Petrov, H. Grötsch and G. Volpe, Analy. Chem. 77, 2564 - 2568 (2005).

Google Scholar

[9] L. Jones and R. A. Tripp, Nano Letters. 6, 2630-2636(2006).

Google Scholar

[10] L. J. Goeller and M. R Riley, Appl. Spec. 61, 679-685 (2007).

Google Scholar

[11] T. Karsshima and M. Yamamoto, Biochem. 44, 10009-10019(2005).

Google Scholar

[12] S. D. Moore and Jr., Biochem. 40, 13583-13591(2001).

Google Scholar

[13] Z. Alavidze, A. Sulakvelidze, JR., and J. G. Morris, Antimicrob. Agents Chemother. 45, 649-659 (2001).

DOI: 10.1128/aac.45.3.649-659.2001

Google Scholar

[14] J. M. Benevides, M. Tsuboi, and G. J. Thomas, Biophy. J. 72, 2748-2762(1997).

Google Scholar

[15] E. Strauch, J. A. Hammerl and S. Hertwig, J. Verbr. Lebensm, 2, 138-143(2007).

Google Scholar

[16] J. Filik and N. Stone, SPIE, 6853, 685309-1(2008).

Google Scholar