[1]
S. Goldstein, Concerning some solutions of the boundary layer equations in hydrodynamics, Proc. Cambridge Phil. Soc. 26 (1930), 1-30.
DOI: 10.1017/s0305004100014997
Google Scholar
[2]
V. M. Falkner and S. W. Skan, Some approximations of the boundary-layer equations, Phil. Mag. 12 (1931), 865-896.
Google Scholar
[3]
D. R. Hartree, On an equation ocuuring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Proc. Cambridge Phil. Soc. 33 (1937), 223-239.
DOI: 10.1017/s0305004100019575
Google Scholar
[4]
L. Howarth, On the solution of the laminar boundary layer equation, Proc. Royal Soc. of London A. 164 (1937), 547-579.
Google Scholar
[5]
T. Cebeci and H. B. Keller, Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation, J. Comput. Phys. 7 (1971), 289-300.
DOI: 10.1016/0021-9991(71)90090-8
Google Scholar
[6]
S. Kakac and Y. Yener, Convective Heat Transfer, Second ed., CRC, Boca Raton, FL, (1995).
Google Scholar
[7]
A. Asaithambi, A finite-difference method for the Falkner-Skan equation, Appl. Math. Comput. 92 (1998), 135-141.
DOI: 10.1016/s0096-3003(97)10042-x
Google Scholar
[8]
L. Wang, A new algorithm for solving classical Blasius equation, Appl. Math. Comput. 157 (2004), 1-9.
Google Scholar
[9]
I. Hashim, Comments on A new algorithm for solving classical Blasius equation, by L. Wang, Appl. Math. Comput. 176 (2006), 700-703.
DOI: 10.1016/j.amc.2005.10.016
Google Scholar
[10]
J. K. Zhou, Differential Transformation and Its Application for Electrical Circuits, Huazhong University Press, Wuhan, China 1986 (in Chinese).
Google Scholar
[11]
M. J. Jang and C. L. Chen, Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, Appl. Math. Comput. 88 (1997), 137-151.
DOI: 10.1016/s0096-3003(96)00308-6
Google Scholar
[12]
S. H. Chang and I. L. Chang, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput. 195 (2008), 799-808.
DOI: 10.1016/j.amc.2007.05.026
Google Scholar
[13]
S. H. Chang and I. L. Chang, A new algorithm for calculating two-dimensional differential transform of nonlinear functions, Appl. Math. Comput. 215 (2009), 2486-2494.
DOI: 10.1016/j.amc.2009.08.046
Google Scholar
[14]
S. H. Chang and I. L. Chang, An efficient method for solving Troesch's problem, Adv. Sci. Lett. 9 (2012), 920-924.
Google Scholar
[15]
A. M. Wazwaz, A reliable modification of Adomian's decomposition method, Appl. Math. Comput. 102 (1999), 77-86.
Google Scholar
[16]
A. M. Wazwaz, The modified decomposition method and the Pade' approximats for solving Thomas-Fermi equation, Appl. Math. Comput. 105 (1999), 11-19.
Google Scholar
[17]
A. M. Wazwaz, The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model, Appl. Math. Comput. 110 (2000), 251-264.
DOI: 10.1016/s0096-3003(99)00131-9
Google Scholar
[18]
G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), 501-544.
Google Scholar