[1]
A.V. Boikov, The Cramer-Lundberg model with stochastic premium process. Theory of Probability and its Applications, Vol. 47(2002), pp.489-493.
DOI: 10.1137/s0040585x9797987
Google Scholar
[2]
H. Jasiulewicz, Probability of ruin with variable premium rate in a Markovian environment. Insurance: Mathematics and Economics, Vol. 29(2001), pp.291-296.
DOI: 10.1016/s0167-6687(01)00090-7
Google Scholar
[3]
R. Wu, L. Wei, The probability of ruin in a kind of Cox risk model with variable premium rate. Scandinavian Actuarial Journal, Vol. 2004(2004), pp.121-132.
DOI: 10.1080/03461230310017216
Google Scholar
[4]
S.Z. Fang, Z.K. Nie, Study of a risk model, Appl Math J Chinese Univ Ser A, Vol. 19(2004), P. 445-450.
Google Scholar
[5]
S.Z. Fang, J.H. Luo, Risk model with two compound Poisson processes, Pure Appl Math, Vol. 22(2006), pp.271-278.
Google Scholar
[6]
J.H. Luo, Survival probability and ruin probability of a risk model. Appl Math J Chinese Univ Ser B, Vol. 23(2008), pp.256-264.
DOI: 10.1007/s11766-008-1916-z
Google Scholar
[7]
D.J. Yao, R.M. Wang, L. Xu, On the expected discounted penalty function associated with the time of ruin for a risk model with random income. Chinese Journal of Applied Probability and Statistics, Vol. 24(2008), pp.319-326.
Google Scholar
[8]
J. Cai, D.C.M. Dickson, On the expected discounted penalty function at ruin of a surplus process with interest. Insurance: Mathematics and Economics, Vol. 30(2002), pp.389-404.
DOI: 10.1016/s0167-6687(02)00120-8
Google Scholar
[9]
J. Cai, Ruin probabilities and penalty functions with stochastic rates of interest, Stochastic Processes and their Applications, Vol. 112(2004), pp.53-78.
DOI: 10.1016/j.spa.2004.01.007
Google Scholar
[10]
H.U. Gerber, E.S.W. Shiu, On the time value of ruin. North America Acturial Journal, Vol. 2 (1998), pp.48-78.
Google Scholar
[11]
Z.S. Ouyang, Y. Yan, Moments of present value functions of incresing life insurance under stochastic interest. Mathematics in Economics, Vol. 20(2003), pp.41-47.
Google Scholar
[12]
X. Zhao, J. Liu, A ruin problem about classical risk process under random interest force. Appl. Math. J. Chinese Univ. Ser. A, Vol. 20(2005), pp.313-319.
Google Scholar
[13]
S.W. He . Introduction of Stochastic Process, Beijing: Higher Education Press, (1996).
Google Scholar
[14]
H.U. Gerber, An introduction to mathematical risk theory. S.S. Huebner Foundation Monographs, University of Pennsylvania, (1979).
Google Scholar