[1]
W. D. Rowe. Understanding uncertainty. Risk Analysis, Vol. 14, Issue 5, (1994), pp.743-750.
Google Scholar
[2]
J. C. Helton, J. D. Johnson, and W. L. Oberkampf. An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering and System Safety, Vol. 85, Issue 1-3, (July-September, 2004), pp.39-71.
DOI: 10.1016/j.ress.2004.03.025
Google Scholar
[3]
W. L Oberkampf, J. C. Helton and S. F. Wojtkiewicz. Challenge problem: Uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety, Vol. 85, Issue 1-3 (January-March, 2004), pp.11-19.
DOI: 10.1016/j.ress.2004.03.002
Google Scholar
[4]
GUO Huixin, LIU Deshun, HU Guanyu, et al. Method of reliability design optimization using evidence theory and interval analysis. Chinese Journal of Mechanical Engineering, Vol. 44, Issue 12, (2008), pp.35-41.
DOI: 10.3901/jme.2008.12.035
Google Scholar
[5]
P. M. Zissimos, Jun Zhou. A Design Optimization Method Using Evidence Theory. Journal of Mechanical Design. Transactions of the ASME, Vol. 128, Issue 4, (July, 2006), pp.901-908.
Google Scholar
[6]
Yan Zhao, Xinfeng Zhang and Huli Shi. Computation of structural system reliability with hybrid uncertainty of fuzzy variables and random variables. Journal of Mechanical Strength, Vol. 30, Issue 1, (January, 2008), pp.72-77.
Google Scholar
[7]
S. S. Rao, Lingtao Cao. Optimum design of mechanical system involving interval parameters. Journal of Mechanical Design, Vol. 124, Issue 3, (September, 2002), pp.465-471.
DOI: 10.1115/1.1479691
Google Scholar
[8]
Didier Dubois, Henri Prade. Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems, Vol. 100, Supplement 1, (1999), P. 35-49.
DOI: 10.1016/s0165-0114(99)80005-0
Google Scholar
[9]
M. C. Florea, A. -L. Jousselme. Fusion of imperfect information in the unified framework of random sets theory: application to target identification. Defence R&D Canada-Valcartier, Technical Report: DRDC Valcartier TR 2003-319, November 2007. http: /pubs. drdc-rddc. gc. ca.
Google Scholar
[10]
Huixin Guo, Zhunfeng Xia, Lie Chen and Xiaobin Pang. Estimation of reliability with hybrid uncertainties in the unified framework of random set theory, In: Intelligent Computing Technology and Automation, The Proceeding of ICICTA 2009, Vol. 2, P. 507-512.
DOI: 10.1109/icicta.2009.357
Google Scholar
[11]
G. Shafer. A mathematical theory of evidence. (Princeton University Press, 1976).
Google Scholar
[12]
D. Dubois and H. Prade. Random sets and fuzzy interval analysis. Fuzzy Sets and Systems, Vol. 42, Issue 1, (July, 1991), pp.87-101.
DOI: 10.1016/0165-0114(91)90091-4
Google Scholar
[13]
W. M. Dong and H. C. Shah. Vertex method for computing functions of fuzzy variables. Fuzzy Sets and Systems, Vol. 24, Issue 1, (October, 1987), pp.65-78.
DOI: 10.1016/0165-0114(87)90114-x
Google Scholar
[14]
X. Du. Uncertainty Analysis with Probability and Evidence Theories. in: Proceedings of ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, (Sept. 2006), pp.1-14.
Google Scholar