Neural Network Analysis of the Magnetic Bearing Systems

Abstract:

Article Preview

In order to overcome the system nonlinear instability and uncertainty inherent in magnetic bearing systems, two PID neural network controllers (BP-based and GA-based) are designed and trained to emulate the operation of a complete system. Through the theoretical deduction and simulation results, the principles for the parameters choice of two neural network controllers are given. The feasibility of using the neural network to control nonlinear magnetic bearing systems with un-known dynamics is demonstrated. The robust performance and reinforcement learning capability in controlling magnetic bearing systems are compared between two PID neural network controllers.

Info:

Periodical:

Edited by:

Honghua Tan

Pages:

190-196

DOI:

10.4028/www.scientific.net/AMM.29-32.190

Citation:

H. Y. Fu et al., "Neural Network Analysis of the Magnetic Bearing Systems", Applied Mechanics and Materials, Vols. 29-32, pp. 190-196, 2010

Online since:

August 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.