Application of the LMI Approach in the Robust Force Control of Servo-Hydraulic Actuator with Parametric Uncertainties

Article Preview

Abstract:

Linear matrix inequalities (LMI) method is proposed to design the robust controller for the servo-hydraulic actuator with parametric uncertainties. The pretreatments are adopted to convert the nonlinear dynamic models into linear state equations using the linear fractional transformation (LFT) approach, which facilitates conveniently utilizing the LMI method to calculate the state feedback controller. The supervising parameters, including the system output and special derivative output generated from the uncertain items, are proposed to model a state matrix equation for representing the dynamic system with the parameter variations and disturbances. LMI control base on the H∞ control schematic is finally employed to carry out the state feedback controller for the servo-hydraulic actuator with parametric uncertainties. The results demonstrate the efficiency of dynamical performance with small settling time and overshoot compared with the quantitative feedback theory (QFT) approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-245

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Niksefat, N. and N. Sepehri: Proceedings of the 1999 American Control Conference Vol. 5(1999), p.3718.

Google Scholar

[2] Yang HY, Xu YM and Sun W: 2008 IEEE/ASME international conference on advanced intelligent mechatronics Vol. 1-3, p.699.

Google Scholar

[3] Karpenko, M. and N. Sepehri: IEEE Control Theory and Applications Vol. 153(2006), p.629.

Google Scholar

[4] Niksefat, N. and N. Sepehri: Control Engineering Practice Vol. 8(2000), p.1335.

Google Scholar

[5] Niksefat, N. and N. Sepehri: IEEE Control Systems Vol. 21(2001), p.66.

Google Scholar

[6] Niksefat, N. and N. Sepehri: IEEE Transactions on Control Systems Technology Vol. 10(2002), p.626.

Google Scholar

[7] Niksefat, N., N. Sepehri, and Q. Wu: International Journal of Robust and Nonlinear Control Vol. 17(2007), p.225.

Google Scholar

[8] Yousefi, H., H. Handroos, and A. Soleymani: Mechatronics Vol. 18(2008), p.513.

Google Scholar

[9] Pommier V, Sabatier J, Lanusse P and Oustaloup A: Control Engineering Practice Vol. 10(2002), p.391.

DOI: 10.1016/s0967-0661(01)00154-x

Google Scholar

[10] Li, Q. and Y. Jun-You: 2008 IEEE Conference on Cybernetics and Intelligent Systems Vol. 1-2(2008), p.538.

Google Scholar

[11] Choi, H.C., D. Chwa, and S.K. Hong: International Journal of Control Automation and Systems Vol. 7(2009), p.487.

Google Scholar

[12] Sloth, C., Esbensen, T., Niss, M.O.K., Stoustrup, J. and Odgaard, P.F.: 2009 IEEE International Conference on Control Applications Vol. 1 (2009), p.776.

DOI: 10.1109/cca.2009.5281171

Google Scholar

[13] Wang, Y., Y. Li, and Y. Wang: Journal of Beijing University of Aeronautics and Astronautics, Vol. 33(2007), p.911.

Google Scholar

[14] Volpe, R. and P. Khosla: 1990 IEEE International Conference on Systems, Man and Cybernetics Conference Proceedings Vol. 4-7(1990), p.784.

Google Scholar

[15] Doll C, Berard C, Knauf A, Biannic JM: 2008 Ieee International Symposium on Computer-Aided Control System Design, Vol. 2-3(2008), p.225.

DOI: 10.1109/cacsd.2008.4627373

Google Scholar

[16] Hafiz, O., A. Mitev, and J.M. Wang: Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences Vol. E92A(2009), p.1148.

Google Scholar

[17] Khargonekar, P.P., I.R. Petersen, and K.M. Zhou: IEEE Transactions on Automatic Control Vol. 35(1990), p.356.

Google Scholar

[18] Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. Proceedings of the Third European Control Conference Vol. 4(1995), p.3206.

Google Scholar