Convergence of Generalized Relaxed SSOR Method for Augmented Systems

Article Preview

Abstract:

In this paper, we present the generalized relaxed SSOR method (GRSSOR) for solving the large sparse augmented systems of linear equations, which is the extension of SOR-like, GSOR and GSSOR methods. Furthermore, convergence of GRSSOR method for augmented systems is analyzed, which show that GRSSOR method with appropriate parameters will have very good effectiveness

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2563-2569

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, pp.1-38.

DOI: 10.1007/s00211-005-0643-0

Google Scholar

[2] M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput, 2006, pp.409-415.

DOI: 10.1016/j.amc.2006.05.094

Google Scholar

[3] H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 1996, pp.33-46.

DOI: 10.1137/0917004

Google Scholar

[4] B. Fischer, A. Ramage, D. J. Silvester and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 1998, pp.527-543.

DOI: 10.1007/bf02510258

Google Scholar

[5] G. H. Golub, X. Wu and J. Y. Yuan, SOR-like methods for augmented systems, BIT, 2001, pp.71-85.

Google Scholar

[6] C. H. Santos, B. P. B. Silva and J. Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 1998, pp.1-9.

DOI: 10.1016/s0377-0427(98)00114-9

Google Scholar

[7] S. Wright, Stability ofaugm ented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 1997, pp.191-222.

DOI: 10.1137/s0895479894271093

Google Scholar

[8] D. M. Young, Iteratin Solution for Large Systems, Academic Press, New York, (1971).

Google Scholar

[9] J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, pp.571-584.

Google Scholar

[10] J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 1996, pp.287-297.

DOI: 10.1016/0377-0427(95)00239-1

Google Scholar

[11] G. F. Zhang and Q. H. Lu, On generelized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 2008, pp.51-58.

Google Scholar