[1]
Z. Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 2005, pp.1-38.
DOI: 10.1007/s00211-005-0643-0
Google Scholar
[2]
M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput, 2006, pp.409-415.
DOI: 10.1016/j.amc.2006.05.094
Google Scholar
[3]
H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 1996, pp.33-46.
DOI: 10.1137/0917004
Google Scholar
[4]
B. Fischer, A. Ramage, D. J. Silvester and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 1998, pp.527-543.
DOI: 10.1007/bf02510258
Google Scholar
[5]
G. H. Golub, X. Wu and J. Y. Yuan, SOR-like methods for augmented systems, BIT, 2001, pp.71-85.
Google Scholar
[6]
C. H. Santos, B. P. B. Silva and J. Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 1998, pp.1-9.
DOI: 10.1016/s0377-0427(98)00114-9
Google Scholar
[7]
S. Wright, Stability ofaugm ented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 1997, pp.191-222.
DOI: 10.1137/s0895479894271093
Google Scholar
[8]
D. M. Young, Iteratin Solution for Large Systems, Academic Press, New York, (1971).
Google Scholar
[9]
J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, pp.571-584.
Google Scholar
[10]
J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 1996, pp.287-297.
DOI: 10.1016/0377-0427(95)00239-1
Google Scholar
[11]
G. F. Zhang and Q. H. Lu, On generelized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 2008, pp.51-58.
Google Scholar